Learning Minimal Separating DFA’s for Compositional Verification

  • Yu-Fang Chen
  • Azadeh Farzan
  • Edmund M. Clarke
  • Yih-Kuen Tsay
  • Bow-Yaw Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5505)


Algorithms for learning a minimal separating DFA of two disjoint regular languages have been proposed and adapted for different applications. One of the most important applications is learning minimal contextual assumptions in automated compositional verification. We propose in this paper an efficient learning algorithm, called Open image in new window , that learns and generates a minimal separating DFA. Our algorithm has a quadratic query complexity in the product of sizes of the minimal DFA’s for the two input languages. In contrast, the most recent algorithm of Gupta et al. has an exponential query complexity in the sizes of the two DFA’s. Moreover, experimental results show that our learning algorithm significantly outperforms all existing algorithms on randomly-generated example problems. We describe how our algorithm can be adapted for automated compositional verification. The adapted version is evaluated on the LTSA benchmarks and compared with other automated compositional verification approaches. The result shows that our algorithm surpasses others in 30 of 49 benchmark problems.


Regular Language Query Complexity Sample Problem Input Language Membership Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angluin, D.: Negative results for equivalence queries. Machine Learning 5(2), 121–150 (1990)Google Scholar
  4. 4.
    Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated compositional verification through learning. In: SAVCBS 2003, pp. 14–21 (2003)Google Scholar
  5. 5.
    Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Dynamic component substitutability analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 512–528. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee reasoning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating DFA’s for compositional verification. Technical Report CMU-CS-09-101, Carnegie Mellon Univeristy (2009)Google Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  9. 9.
    Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning. ACM Transactions on Software Engineering and Methodology 7(2), 1–52 (2008)CrossRefGoogle Scholar
  10. 10.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending automated compositional verification to the full class of omega-regular languages. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS, vol. 4693, pp. 2–17. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining interface alphabets for compositional verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 420–432. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Transitions on Electronic Computers EC-8, 356–366 (1959)CrossRefGoogle Scholar
  16. 16.
    Pena, J.M., Oliveira, A.L.: A new algorithm for the reduction of incompletely specified finite state machines. In: ICCAD 1998, pp. 482–489. ACM Press, New York (1998)Google Scholar
  17. 17.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103(2), 299–347 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learning. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yu-Fang Chen
    • 1
  • Azadeh Farzan
    • 2
  • Edmund M. Clarke
    • 3
  • Yih-Kuen Tsay
    • 1
  • Bow-Yaw Wang
    • 4
  1. 1.National Taiwan UniversityTaiwan
  2. 2.University of TorontoCanada
  3. 3.Carnegie Mellon UniversityUSA
  4. 4.Academia SinicaTaiwan

Personalised recommendations