Static Analysis Techniques for Parameterised Boolean Equation Systems

  • Simona Orzan
  • Wieger Wesselink
  • Tim A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5505)


Parameterised Boolean Equation Systems (PBESs) can be used to encode and solve various types of model checking and equivalence checking problems. PBESs are typically solved by symbolic approximation or by instantiation to Boolean Equation Systems (BESs). The latter technique suffers from something similar to the state space explosion problem and we propose to tackle it by static analysis techniques, which we tailor for PBESs. We introduce a method to eliminate redundant parameters and a method to detect constant parameters. Both lead to a better performance of the instantiation and they can sometimes even reduce problems that are intractable due to the infinity of the underlying BES to tractable ones.


Model Check Equation System Equivalence Check Label Transition System Predicate Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite systems using parameterized boolean equation systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL (1977)Google Scholar
  4. 4.
    van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised boolean equation systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 440–454. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Gallardo, M.M., Joubert, C., Merino, P.: Implementing influence analysis using parameterised boolean equation systems. In: Proc. ISOLA 2006. IEEE Comp. Soc. Press, Los Alamitos (2006)Google Scholar
  6. 6.
    Groote, J.F., Lisser, B.: Computer assisted manipulation of algebraic process specifications. SIGPLAN Notices 37(12), 98–107 (2002)CrossRefGoogle Scholar
  7. 7.
    Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput. Program 56(3), 251–273 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor. Comput. Sci. 343(3), 332–369 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hentze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In: Proc. PLDI 1997. ACM, New York (1997)Google Scholar
  10. 10.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, p. 155. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-calculus. In: Proc. 2nd Int’l Workshop on VMCAI (September 1998)Google Scholar
  12. 12.
    Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Orzan, S., Willemse, T.A.C.: Invariants for parameterised boolean equation systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 187–202. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    van de Pol, J.C., Valero Espada, M.: Modal abstractions in μCRL*. In: Proc. AMAST (2004)Google Scholar
  15. 15.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Mathematics 5(2), 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Watanabe, H., Nishizawa, K., Takaki, O.: A coalgebraic representation of reduction by cone of influence. In: Proc. of Workshop on Coalgebraic Methods in Computer Science, vol. 164(1), pp. 177–194 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Simona Orzan
    • 1
  • Wieger Wesselink
    • 1
  • Tim A. C. Willemse
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations