Advertisement

Abstract

We compare tools for complementing nondeterministic Büchi automata with a recent termination-analysis algorithm. Complementation of Büchi automata is a key step in program verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem, along with both a reduction to Büchi automata and a Ramsey-based algorithm. This algorithm strongly resembles the initial complementation constructions for Büchi automata.

We prove that the SCT algorithm is a specialized realization of the Ramsey-based complementation construction. Surprisingly, empirical analysis suggests Ramsey-based approaches are superior over the domain of SCT problems. Upon further analysis we discover an interesting property of the problem space that both explains this result and provides a chance to improve rank-based tools. With these improvements, we show that theoretical gains in efficiency are mirrored in empirical performance.

Keywords

Problem Space Call Graph Call Sequence Specialized Realization Call Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Ben-Amram, A.M., Lee, C.: Program termination analysis in polynomial time. ACM Trans. Program. Lang. Syst 29(1) (2007)Google Scholar
  3. 3.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: ICLMPS, pp. 1–12. Stanford University Press (1962)Google Scholar
  4. 4.
    Choueka, Y.: Theories of automata on ω-tapes: A simplified approach. Journal of Computer and Systems Science 8, 117–141 (1974)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Doyen, L., Raskin, J.-F.: Improved algorithms for the automata-based approach to model-checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Emerson, A.E., Sistla, A.P.: Deciding full branching time logics. Information and Control 61(3), 175–201 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Frederiksen, C.C.: A simple implementation of the size-change termination principle. Tech. Rep. D-442, DIKU (2001)Google Scholar
  8. 8.
    Glenstrup, A.J.: Terminator ii: Stopping partial evaluation of fully recursive programs. Master’s thesis, DIKU, University of Copenhagen (June 1999)Google Scholar
  9. 9.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. Transactions on Computational Logic, 409–429 (2001)Google Scholar
  10. 10.
    Lee, C., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)Google Scholar
  11. 11.
    Michel, M.: Complementation is more difficult with automata on infinite words. In: CNET, Paris (1988)Google Scholar
  12. 12.
    Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Safra, S.: On the Complexity of ω-Automat. In: FOCS, pp. 319–327 (1988)Google Scholar
  14. 14.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 217–237. Springer, Heidelberg (1985)Google Scholar
  15. 15.
    Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 396–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Wahlstedt, D.: Detecting termination using size-change in parameter values. Master’s thesis, Göteborgs Universitet (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Seth Fogarty
    • 1
  • Moshe Y. Vardi
    • 1
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA

Personalised recommendations