A New Technique for Multidimensional Linear Cryptanalysis with Applications on Reduced Round Serpent

  • Joo Yeon Cho
  • Miia Hermelin
  • Kaisa Nyberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5461)

Abstract

In this paper, we present a new technique for Matsui’s algorithm 2 using multidimensional linear approximation. We show that the data complexity of the attack can be reduced significantly by our method even when the linear hull effect is present. We apply our method to the key recovery attack on 5-round Serpent and demonstrate that our attack is superior to previous attacks. We present evidence that it is theoretically possible to reduce the data complexity of the linear attack against 10 round Serpent by factor of 220 when multiple approximations are used.

Keywords

Block Ciphers Linear Cryptanalysis Serpent Multidimensional Linear Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced encryption standard. In: First Advanced Encryption Standard (AES) conference (1998)Google Scholar
  2. 2.
    Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 219–238. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Collard, B., Standaert, F., Quisquater, J.: Improved and multiple linear cryptanalysis of reduced round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 47–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Collard, B., Standaert, F., Quisquater, J.: Experiments on the multiple linear cryptanalysis of reduced round serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 382–397. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Collard, B., Standaert, F., Quisquater, J. (Accessed on 31.07.2008), http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip
  8. 8.
    Hermelin, M., Cho, J., Nyberg, K.: Multidimensional linear cryptanalysis of reduced round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Seluk, A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21(1), 131–147 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: CCS 1996: Proceedings of the 3rd ACM conference on Computer and communications security, pp. 139–147. ACM, New York (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joo Yeon Cho
    • 1
  • Miia Hermelin
    • 1
  • Kaisa Nyberg
    • 1
  1. 1.Department of Information and Computer ScienceHelsinki University of TechnologyFinland

Personalised recommendations