Assembly of Large Genomes from Paired Short Reads

  • Benjamin G. Jackson
  • Patrick S. Schnable
  • Srinivas Aluru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5462)

Abstract

The de novo assembly of genomes from high-throughput short reads is an active area of research. Several promising methods have been recently developed, with applicability largely restricted to the smaller and less complex bacterial genomes. In this paper, we present a method for assembling large genomes from high-coverage paired short reads. Our method exploits large distributed memory and parallelism available on multiprocessor systems to handle memory-intensive phases of the algorithm, effectively allowing scaling to large genomes. We present parallel algorithms to construct a bidirected string graph that is several orders of magnitude smaller than the raw sequence data and to extract features from paired reads. We also present a heuristic method that uses these features to guide the extension of partial graph traversals corresponding to large genomic contigs. In addition, we propose a simple model for error correction and derive a lower bound on the coverage needed for its use. We present a validation of our framework with short reads from D. melanogaster and S. cervisiae synthetically generated at 300-fold coverage. Assembly of the D. melanogaster genome resulted in large contigs (50% of the genome covered by contigs larger than 102Kb), accurate to 99.9% of the bases, in under 4 hours of wall clock time on a 512-node Blue Gene/L.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennet, S.: Solexa ltd. Pharmacogenomics 5(4), 433–438 (2004)CrossRefGoogle Scholar
  2. 2.
    Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C.N., Jaffe, D.B.: ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Research 18, 810–820 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chaisson, M.J., Pevzner, P.A.: Short fragment assembly of bacterial genomes. Genome Research 18, 324–330 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Research 17, 1697–1706 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Helman, D.R., Ja’Ja’, J., Bader, D.A.: A new deterministic parallel sorting algorithm with an experimental evaluation. Journal of Experimental Algorithms 3, 4 (1998)CrossRefGoogle Scholar
  7. 7.
    Hernandez, D., Francois, P., Farinelli, L., Osteras, M., Schrenzel, J.: De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Research 18, 802–809 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hossain, S., Azimi, N., Skiena, S.: Crystallizing short-read assemblies around lone Sanger reads. Bioinformatics (2009)Google Scholar
  9. 9.
    Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Journal of Computational Biology 2, 291–306 (1995)CrossRefPubMedGoogle Scholar
  10. 10.
    Jackson, B.G., Aluru, S.: Parallel construction of bidirected string graphs for genome assembly. In: Proceedings of the International Conference on Parallel Processsing, pp. 346–353 (2008)Google Scholar
  11. 11.
    Jackson, B.G., Schanble, P.S., Aluru, S.: Parallel short sequence assembly of transcriptomes. BMC Bioinformatics 10, S14 (2009)CrossRefGoogle Scholar
  12. 12.
    Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome Biology 5 (2004)Google Scholar
  13. 13.
    Margulies, M., Egholm, M.: Genome sequencing in open microfabricated high density picoliter reactors. Nature 437(7054), 376–380 (2005)PubMedPubMedCentralGoogle Scholar
  14. 14.
    Medvedev, P., Brudno, M.: Ab initio whole genome shotgun assembly with mated short reads. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 50–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Myers, E.W.: The fragment assembly string graph. Bioinformatics 21, ii79–ii85 (2005)Google Scholar
  16. 16.
    Ossowski1, S., Schneeberger1, K., Clark, R.M., Lanz, C., Warthmann, N., Weigel, D.: Sequencing of natural strains of arabidopsis thaliana with short reads. Genome Research (preprint) (2008)Google Scholar
  17. 17.
    Pandey, V., Nutter, R.C., Prediger, E.: Applied Biosystems SOLiD System: Ligation-Based Sequencing. Wiley, Chichester (2008)Google Scholar
  18. 18.
    Pevzner, P.A., Tang, H., Waterman, M.S.: Fragment assembly with double-barreled data. Proceedings of the National Academy of Sciences 98(17), 9748–9753 (2001)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Wang, W., Li, R., Li, Y.: The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Warren, R.L., Sutton, G.G., Jones, S.J.M., Holt, R.A.: Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23, 500–501 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    Wicker, T., Narechania, A., Sabot, F., Vu, G.T.H., Graner, A., Ware, D., Stein, N.: Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9, 518 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Business Wire. Helicos biosciences enters molecular diagnostics collaboration with renowned research center to sequence cancer-associated genes. Genetic Engineering and Biotechnology News (2008)Google Scholar
  23. 23.
    Zerbino, D., Birney, E.: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18, 821–829 (2008)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benjamin G. Jackson
    • 1
  • Patrick S. Schnable
    • 2
  • Srinivas Aluru
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringUSA
  2. 2.Center For Plant GenomicsIowa State UniversityAmesUSA

Personalised recommendations