cnF2freq: Efficient Determination of Genotype and Haplotype Probabilities in Outbred Populations Using Markov Models

  • Carl Nettelblad
  • Sverker Holmgren
  • Lucy Crooks
  • Örjan Carlborg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5462)


We have applied and implemented HMM (Hidden Markov Model) algorithms to calculate QTL genotype probabilities from marker and pedigree data in general population structures. These algorithms have a linear complexity in memory. In nearly all experimental pedigrees they result in more precise genotype estimates than the most commonly used approaches for determining genotypes at non-marker positions in QTL analysis in outbred F2 line intercrosses [1], which include an exponential complexity factor as well as a data-reducing sampling step [2]. With a proper choice of parameters, the results from the existing methods can also be reproduced exactly. We show how the relative run times differ by a factor of 50 when 24 SNP markers are used, with our run time practically independent of marker count. The new method can also provide multi-generational probability estimates and perform haplotype inference from unphased data, which further improves accuracy and flexibility. An important future application of this method is for computationally efficient QTL genotype estimation in maps based on data from SNP chips containing 1000s of markers with mixed information content, for which there are no other suitable methods available at present.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haley, C.S., Knott, S.A., Elsen, J.M.: Mapping Quantitative Trait Loci in Crosses Between Outbred Lines Using Least Squares. Genetics 136(3), 1195–1207 (1994)PubMedPubMedCentralGoogle Scholar
  2. 2.
    Seaton, G., Haley, C.S., Knott, S.A., Kearsey, M., Visscher, P.M.: QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18(2), 339–340 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    Doerge, R.W.: Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3(1), 43–52 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Lander, E.S., Botstein, D.: Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics 121(1), 185–199 (1989)PubMedPubMedCentralGoogle Scholar
  5. 5.
    Broman, K.W., Wu, H., Sen, S., Churchill, G.A.: R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7), 889–890 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    Vignal, A., Milan, D., SanCristobal, M., Eggen, A.: A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34(3), 275–305 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Slate, J.: Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Molecular Ecology 14(2), 363–379 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    Andersson, L., Georges, M.: Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5(3), 202–212 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Haldane, J.B.S.: The combination of linkage values, and the calculation of distances between the loci of linked factors. Journal of Genetics 8, 299–309 (1919)CrossRefGoogle Scholar
  10. 10.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  11. 11.
    Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad Sci. U S A 84(8), 2363–2367 (1987)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)CrossRefGoogle Scholar
  13. 13.
    Broman, K.W.: Use of Hidden Markov Models for QTL mapping. Working Paper 125, John Hopkins University, Dept. of Biostatistics (2006)Google Scholar
  14. 14.
    Carlborg, O., Andersson, L., Kinghorn, B.: The Use of a Genetic Algorithm for Simultaneous Mapping of Multiple Interacting Quantitative Trait Loci. Genetics 155(4), 2003–2010 (2000)PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ljungberg, K., Holmgren, S., Carlborg, O.: Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20(12), 1887–1895 (2004)CrossRefPubMedGoogle Scholar
  16. 16.
    Sillanpaa, M.J., Arjas, E.: Bayesian Mapping of Multiple Quantitative Trait Loci From Incomplete Inbred Line Cross Data. Genetics 148(3), 1373–1388 (1998)PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kerje, S., Carlborg, O., Schütz, K., Hartmann, C., Jensen, P., Andersson, L.: The twofold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34(4), 264–274 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Crooks, L., Sahana, G., de Koning, D.J., Sando Lund, M., Carlborg, O.: Comparison of analyses of the QTLMAS XII common data set II: genome-wide association and fine mapping (submitted) (2008)Google Scholar
  19. 19.
    Li, J., Jiang, T.: Efficient inference of haplotypes from genotypes on a pedigree. J. Bioinformatics and Computational Biology 1(1), 41–70 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12(5), 921–927 (1995)PubMedGoogle Scholar
  21. 21.
    Clark, A.: Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 7(2), 111–122 (1990)PubMedGoogle Scholar
  22. 22.
    Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70(1), 157–169 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carl Nettelblad
    • 1
  • Sverker Holmgren
    • 1
  • Lucy Crooks
    • 2
  • Örjan Carlborg
    • 2
  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Department of Animal Breeding and GeneticsSLUUppsalaSweden

Personalised recommendations