Modeling of Genetic Regulatory Network in Stochastic π-Calculus

  • Mylène Maurin
  • Morgan Magnin
  • Olivier Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5462)

Abstract

In this paper, we address the problem of modeling biological regulatory networks thanks to the stochastic π-calculus. We propose a method which extends a logical method, that is the approach of René Thomas. By introducing temporal and stochastic aspects there, we make our formalism closer to biological reality. We then use the SPiM stochastic simulator to illustrate the practical interests of this description. The application example concerns the behaviors of four interacting genes involved in the λ-phage. Interesting results are emerging from the simulations. First, it confirms knowledge of the regulation phenomena. In addition, experiments with different values of the delay parameters give some precious hints of a tendency either for the lytic phase or to the lysogenic phase.

Keywords

Genetic regulatory network Stochastic π-calculus System biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)PubMedPubMedCentralGoogle Scholar
  3. 3.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2 (1962); 2nd edn., New York: Griffiss Air Force Base, Technical Report RADC-TR-65–377, vol. 1(suppl. 1), English translation (1966)Google Scholar
  4. 4.
    Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. of Discrete Algorithms 6(2), 165–177 (2008)CrossRefGoogle Scholar
  5. 5.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of gene regulatory networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Adélaïde, M., Sutre, G.: Parametric analysis and abstraction of genetic regulatory networks. In: Proc. 2nd Workshop on Concurrent Models in Molecular Biol. (BioCONCUR 2004), London, UK. Electronic Notes in Theor. Comp. Sci. Elsevier, Amsterdam (2004)Google Scholar
  8. 8.
    Ahmad, J., Bernot, G., Comet, J.P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4), 231–251 (2007)CrossRefGoogle Scholar
  9. 9.
    Eker, S., Laderoute, K., Lincoln, P., Talcott, C.: Pathway logic: executable models of biological networks. In: Fourth International Workshop on Rewriting Logic and Its Applications (WRLA 2002), Elsevier, Amsterdam (2002)Google Scholar
  10. 10.
    Talcott, C.: Formal executable models of cell signaling primitives. In: Margaria, T., Philippou, A., Steffen, B. (eds.) 2nd International Symposium On Leveraging Applications of Formal Methods, Verification and Validation ISOLA 2006, pp. 303–307 (2006)Google Scholar
  11. 11.
    Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)CrossRefPubMedGoogle Scholar
  12. 12.
    Calzone, L., Chabrier-rivier, N., Fages, F., Soliman, S., Rocquencourt, I., Contraintes, P.: A machine learning approach to biochemical reaction rules discovery. In: Doyle III, F.J. (ed.) Proceedings of Foundations of Systems Biology and Engineering FOSBE 2005, pp. 375–379 (2005)Google Scholar
  13. 13.
    Regev, A., Panina, A., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Elsevier Science, Amsterdam (2003)Google Scholar
  14. 14.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proc. Pacific Symp. of Biocomputing, vol. 6, pp. 459–470 (2001)Google Scholar
  15. 15.
    Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)CrossRefGoogle Scholar
  16. 16.
    Lecca, P., Priami, C.: Cell cycle control in eukaryotes: A biospi model. Electr. Notes Theor. Comput. Sci. 180(3), 51–63 (2007)CrossRefGoogle Scholar
  17. 17.
    Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. Transactions on Computational Systems Biology VII 4230, 24–55 (2006)CrossRefGoogle Scholar
  18. 18.
    Ptashne, M.: A genetic switch: Phage λ and higher organisms, 2nd edn. Cell Press and Blackwell science, Malden (1992)Google Scholar
  19. 19.
    Ackers, G.K., Johnson, A.D., Shea, M.A.: Quantitative model for gene regulation by λ phage repressor. Proceedings of the National Academy of Science USA 79, 1129–1133 (1982)CrossRefGoogle Scholar
  20. 20.
    Shea, M.A., Ackers, G.K.: The or control system of bacteriophage lambda: a physical-chemical model for gene regulation. J. Mol. Biol. 181, 211–230 (1985)CrossRefPubMedGoogle Scholar
  21. 21.
    Sauer, R.T.: Molecular characterization of the lambda repressor and its gene ci. Harvard University Press, Cambridge (1979)Google Scholar
  22. 22.
    Phillips, A., Cardelli, L.: Spim (2007), http://research.microsoft.com/~aphillip/spim/
  23. 23.
    Priami, C.: Stochastic π-calculus. Computer Journal 6, 578–589 (1995)CrossRefGoogle Scholar
  24. 24.
    Milner, R.: A calculus of mobile processes. Information and computation 100, 1–77 (1992)CrossRefGoogle Scholar
  25. 25.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 184–199. Springer, Heidelberg (2007)Google Scholar
  26. 26.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  27. 27.
    Phillips, A.: The SPIM Language. Version 0.05 (2007)Google Scholar
  28. 28.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - ii. immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297 (1995)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mylène Maurin
    • 1
  • Morgan Magnin
    • 1
  • Olivier Roux
    • 1
  1. 1.IRCCyN, CNRS UMR 6597Nantes Cedex 3France

Personalised recommendations