Journal on Data Semantics XII pp 37-65

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5480) | Cite as

Towards a Scalable Query Rewriting Algorithm in Presence of Value Constraints

  • H. Jaudoin
  • F. Flouvat
  • J. -M. Petit
  • F. Toumani

Abstract

In this paper, we investigate the problem of query rewriting using views in a hybrid language allowing nominals (i.e., individual names) to occur in intentional descriptions. Of particular interest, restricted form of nominals where individual names refer to simple values enable the specification of value constraints, i.e, sets of allowed values for attributes. Such constraints are very useful in practice enabling, for example, fine-grained description of queries and views in integration systems and thus can be exploited to reduce the query processing cost. We use description logics to formalize the problem of query rewriting using views in presence of value constraints and show that the technique of query rewriting can be used to process queries under the certain answer semantics. We propose a sound and complete query rewriting Bucket-like algorithm. Data mining techniques have been used to favor scalability w.r.t. the number of views. Experiments on synthetic datasets have been conducted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views. In: PODS 1998, Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 254–263. ACM Press, New York (1998)Google Scholar
  2. 2.
    Afrati, F.N., Li, C., Mitra, P.: Answering queries using views with arithmetic comparisons. In: Popa, L. (ed.) PODS 2002, Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 209–220. ACM, New York (2002)Google Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994, Proceedings of the International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  5. 5.
    Bayardo Jr., R.J., Goethals, B., Zaki, M.J. (eds.): FIMI 2004, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, UK, November 2004. CEUR Workshop Proceedings, vol. 126 (2004) CEUR-WS.orgGoogle Scholar
  6. 6.
    Bayardo Jr., R.J., Zaki, M.J. (eds.): FIMI 2003, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, USA, November. CEUR Workshop Proceedings, vol. 90 (2003) CEUR-WS.orgGoogle Scholar
  7. 7.
    Beeri, C., Halevy, A., Rousset, M.C.: Rewriting Queries Using Views in Description Logics. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) PODS 1997, Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Tucson, Arizona, May 12–14, pp. 99–108. ACM Press, New York (1997)Google Scholar
  8. 8.
    Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for subsumption in the classic description logic. Journal of Artificial Intelligence Research (JAIR) 1, 277–308 (1994)MATHGoogle Scholar
  9. 9.
    De Marchi, F., Petit, J.-M.: Zigzag: a new algorithm for mining large inclusion dependencies in database. In: ICDM 2003, Proceedings of the IEEE International Conference on Data Mining, pp. 27–34. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  10. 10.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Flouvat, F., De Marchi, F., Petit, J.-M.: iZi: A new toolkit for pattern mining problems. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS, vol. 4994, pp. 131–136. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Goasdoué, F., Rousset, M.-C.: Answering queries using views: A krdb perspective for the semantic web. ACM Transactions on Internet Technology 4(3), 255–288 (2004)CrossRefGoogle Scholar
  13. 13.
    Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.: Discovering all most specific sentences. ACM transactions on database systems 28(2), 140–174 (2003)CrossRefGoogle Scholar
  14. 14.
    Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Horrocks, I., Sattler, U.: Ontology reasoning in the shoq(d) description logic. In: Nebel, B. (ed.) IJCAI 2001, International Joint Conferences on Artificial Intelligence, pp. 199–204. Morgan Kaufmann, San Francisco (2001)Google Scholar
  16. 16.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm for discovering functional and approximate dependencies. Computer Journal 42(2), 100–111 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals and its application in joint generation. Discrete Applied Mathematics 154(16), 2350–2372 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Küsters, R.: Non-Standard Inferences in Description Logics. LNCS, vol. 2100. Springer, Heidelberg (2001)MATHGoogle Scholar
  19. 19.
    Lenzerini, M.: Data integration: A theoretical perspective. In: PODS 2002, Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Madison, Wisconsin (2002)Google Scholar
  20. 20.
    Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources using source descriptions. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB 1996, Proceedings of the International Conference on Very Large Data Bases, pp. 251–262. Morgan Kaufmann, San Francisco (1996)Google Scholar
  21. 21.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data mining and knowledge discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  22. 22.
    Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries using views. VLDB Journal 10(2-3), 182–198 (2001)MATHGoogle Scholar
  23. 23.
    Schaerf, A.: Reasoning with individuals in concept languages. Data & Knowledge Engineering 13(2), 141–176 (1994)CrossRefGoogle Scholar
  24. 24.
    Ullman, J.D.: Information integration using logical views. Theoretical Computer Science 239(2), 189–210 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Jaudoin
    • 1
  • F. Flouvat
    • 2
  • J. -M. Petit
    • 2
  • F. Toumani
    • 3
  1. 1.University of Rennes, ENSSAT Lannion, IRISA, UMR6074 CNRSFrance
  2. 2.University of Lyon, INSA-Lyon, LIRIS, UMR5203 CNRSFrance
  3. 3.University of Clermont-Ferrand, LIMOS, UMR6158 CNRSFrance

Personalised recommendations