Advertisement

Efficient Edge-Finding on Unary Resources with Optional Activities

Revised and Extended Version
  • Sebastian Kuhnert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5437)

Abstract

Unary resources play a central role in modelling scheduling problems. Edge-finding is one of the most popular techniques to deal with unary resources in constraint programming environments. Often it depends on external factors if an activity will be included in the final schedule, making the activity optional. Currently known edge-finding algorithms cannot take optional activities into account. This paper introduces an edge-finding algorithm that finds restrictions for enabled and optional activities. The performance of this new algorithm is studied for modified job-shop and random-placement problems.

Keywords

constraint-based scheduling global constraints optional tasks and activities unary resources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling – Applying Constraint Programming to Scheduling Problems. Kluwer Academic Publishers, Dordrecht (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Barták, R., Müller, T., Rudová, H.: A new approach to modeling and solving minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS, vol. 3010, pp. 233–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Colombani, Y.: Constraint programming: an efficient and practical approach to solving the job-shop problem. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 149–163. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Hoche, M., Müller, H., Schlenker, H., Wolf, A.: firstcs– A Pure Java Constraint Programming Engine. In: Hanus, M., Hofstedt, P., Wolf, A. (eds.) 2nd International Workshop on Multiparadigm Constraint Programming Languages – MultiCPL 2003, September 29 (2003), http://uebb.cs.tu-berlin.de/MultiCPL03/Proceedings.MultiCPL03.RCoRP03.pdf
  6. 6.
    Vilím, P.: O(n log n) Filtering Algorithms for Unary Resource Constraint. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 335–347. Springer, Heidelberg (2004), http://kti.mff.cuni.cz/~vilim/nlogn.pdf
  7. 7.
    Vilím, P., Barták, R., Čepek, O.: Extension of O(n log n) Filtering Algorithms for the Unary Resource Constraint to Optional Activities. In: Constraints, vol. 10.4, pp. 403–425 (2004), http://kti.mff.cuni.cz/~vilim/constraints2005.pdf
  8. 8.
    Wolf, A., Schlenker, H.: Realising the alternative resources constraint. In: Seipel, D., Hanus, M., Geske, U., Bartenstein, O. (eds.) INAP/WLP 2004. LNCS, vol. 3392, pp. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sebastian Kuhnert
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations