The Computational Complexity of Quantified Reciprocals

  • Jakub Szymanik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5422)


We study the computational complexity of reciprocal sentences with quantified antecedents. We observe a computational dichotomy between different interpretations of reciprocity, and shed some light on the status of the so-called Strong Meaning Hypothesis.


Reciprocal expressions computational complexity generalized quantifiers Strong Meaning Hypothesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heim, I., Lasnik, H., May, R.: Reciprocity and plurality. Linguistic Inquiry 22, 63–101 (1991)Google Scholar
  2. 2.
    Beck, S.: The semantics of different: Comparison operator and relational adjective. Linguistics and Philosophy 23, 101–139 (2000)CrossRefGoogle Scholar
  3. 3.
    Sabato, S., Winter, Y.: From semantic restrictions to reciprocal meanings. In: Proceedings of FG-MOL 2005. CSLI Publications (2005)Google Scholar
  4. 4.
    Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal expressions and the concept of reciprocity. Linguistics and Philosophy 21, 159–210 (1998)CrossRefGoogle Scholar
  5. 5.
    Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44, 12–36 (1957)MathSciNetMATHGoogle Scholar
  6. 6.
    Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)MathSciNetMATHGoogle Scholar
  7. 7.
    Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)CrossRefMATHGoogle Scholar
  8. 8.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)Google Scholar
  9. 9.
    Winter, Y.: Flexibility principles in Boolean semantics. The MIT Press, London (2001)MATHGoogle Scholar
  10. 10.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)MATHGoogle Scholar
  11. 11.
    Blass, A., Gurevich, Y.: Henkin quantifiers and complete problems. Annals of Pure and Applied Logic 32, 1–16 (1986)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mostowski, M., Wojtyniak, D.: Computational complexity of the semantics of some natural language constructions. Annals of Pure and Applied Logic 127, 219–227 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sevenster, M.: Branches of imperfect information: logic, games, and computation. PhD thesis, Universiteit van Amsterdam (2006)Google Scholar
  14. 14.
    Otto, M.: Bounded Variable Logics and Counting, vol. 9. Springer, Heidelberg (1997)MATHGoogle Scholar
  15. 15.
    Grädel, E., Gurevich, Y.: Metafinite model theory. Information and Computation 140, 26–81 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mostowski, M., Szymanik, J.: Computational complexity of some Ramsey quantifiers in finite models. The Bulletin of Symbolic Logic 13, 281–282 (2007)Google Scholar
  17. 17.
    Väänänen, J.: Unary quantifiers on finite models. Journal of Logic, Language and Information 6, 275–304 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hella, L., Väänänen, J., Westerståhl, D.: Definability of polyadic lifts of generalized quantifiers. Journal of Logic, Language and Information 6, 305–335 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Frege, G.: Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik 100, 25–50 (1892)Google Scholar
  20. 20.
    Moschovakis, Y.: A logical calculus of meaning and synonymy. Linguistics and Philosophy 29, 27–89 (2006)CrossRefGoogle Scholar
  21. 21.
    Cherniak, C.: Minimal rationality. Mind 90, 161–183 (1981)CrossRefGoogle Scholar
  22. 22.
    Levesque, H.J.: Logic and the complexity of reasoning. Journal of Philosophical Logic 17, 355–389 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    van Rooij, I.: The tractable cognition thesis. Cognitive Science: A Multidisciplinary Journal 32, 939–984 (2008)CrossRefGoogle Scholar
  24. 24.
    Ristad, E.S.: The Language Complexity Game (Artificial Intelligence). The MIT Press, Cambridge (1993)Google Scholar
  25. 25.
    Mostowski, M., Szymanik, J.: Semantic bounds for everyday language. Technical Report ILLC Preprint Series, PP-2006-40, Institute for Logic, Language and Computation, University of Amsterdam (2005) (to appear in Semiotica)Google Scholar
  26. 26.
    Frixione, M.: Tractable competence. Minds and Machines 11, 379–397 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Mcmillan, C.T., Clark, R., Moore, P., Devita, C., Grossman, M.: Neural basis for generalized quantifiers comprehension. Neuropsychologia 43, 1729–1737 (2005)CrossRefGoogle Scholar
  28. 28.
    Szymanik, J.: A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia 45, 2158–2160 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jakub Szymanik
    • 1
    • 2
  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Institute of PhilosophyUniversity of WarsawPoland

Personalised recommendations