Advertisement

Jamology: Physics of Self-driven Particles and Toward Solution of All Jams

Chapter

Abstract

Jamming phenomena are seen in various kinds of flow, such as vehicles on highway, pedestrians in a corridor, data packets in internet and productions in a supply chain network. Jamology is an interdisciplinary research of analyzing and solving these jams. In this study, vehicles, pedestrians, etc., are all regarded as selfdriven particles, which are active particles and do not satisfy the Newton’s laws in general. Dynamics of these particles are studied by using a rule-based model, i.e., cellular automata. In this paper, starting from the background of this research, a simple model, called the asymmetric simple exclusion process, is introduced as basis of all kinds of traffic flow. Then it is extended in order to account each traffic phenomenon in a realistic way. Comparison between theory and experiment shows that the models are able to capture fundamental features of observations.

Keywords

Cellular Automaton Molecular Motor Supply Chain Network Cellular Automaton Model Asymmetric Simple Exclusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067 (2001)CrossRefGoogle Scholar
  3. 3.
    Nishinari, K., Okada, Y., Schadschneider, A., Chowdhury, D.: Intracellular transport of single-headed molecular motors kif1a. Phys. Rev. Lett. 95, 118101 (2005)CrossRefGoogle Scholar
  4. 4.
    Helbing, D., Lämmer, S., Witt, U., Brenner, T.: Network-induced oscillatory behavior in material flow networks and irregular business cycles. Phys. Rev. E 70(5), 56118 (2004)CrossRefGoogle Scholar
  5. 5.
    Chowdhury, D., Nishinari, K., Schadschneider, A.: Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Transitions 77(5), 601–624 (2004)CrossRefGoogle Scholar
  6. 6.
    Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2(4), 318–352 (2005)CrossRefGoogle Scholar
  7. 7.
    Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata model of flow in ant trails: non-monotonic variation of speed with density. J. Phys. A: Math. Gen. 35, 573–577 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kunwar, A., John, A., Nishinari, K., Schadschneider, A., Chowdhury, D.: Collective traffic-like movement of ants on a trail: Dynamical phases and phase transitions. J. Phys. Soc. Jpn. 73, 2979–2985 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Tomoeda, A., Nishinari, K., Chowdhury, D., Schadschneider, A.: An information-based traffic control in a public conveyance system: Reduced clustering and enhanced efficiency. Physica A 384, 600–612 (2007)CrossRefGoogle Scholar
  10. 10.
    Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: Comparison of update procedures. J. Stat. Phys. 92, 151 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. ii. a theory of traffic flow on long crowded roads. Proc. Roy. Soc. A 229, 317–345 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Musha, T., Higuchi, H.: The 1/f fluctuation of a traffic current on an expressway. Jpn. J. Appl. Phys. 15, 1271–1275 (1976)CrossRefGoogle Scholar
  14. 14.
    Kanai, M., Nishinari, K., Tokihiro, T.: Stochastic optimal velocity model and its long-lived metastability. Phys. Rev. E 72, 035102(R) (2005)CrossRefGoogle Scholar
  15. 15.
    Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Phenomenological study of dynamical model of traffic flow. J. Phys. I France 5, 1389 (1995)CrossRefGoogle Scholar
  16. 16.
    Spitzer, F.: Interaction of markov processes. F. Spitzer. Adv. Math. 5, 246 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: Foraging ants and pedestrians. Physica A 372, 132 (2006)CrossRefGoogle Scholar
  18. 18.
    Wolf, D.E., Schreckenberg, M., Bachem, A.: Traffic and Granular Flow. World Scientific, Singapore (1996)Google Scholar
  19. 19.
    Schreckenberg, M., Sharma, S.D. (eds.): Pedestrian and Evacuation Dynamics. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  23. 23.
    Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE Trans. Inf. & Syst. E87-D, 726–732 (2004)Google Scholar
  24. 24.
    Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67, 056122 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Faculty of EngineeringThe University of TokyoTokyoJapan
  2. 2.PRESTO, Japan Science and Technology Corporation 

Personalised recommendations