Optimizing the Control Hierarchy of an ECC Coprocessor Design on an FPGA Based SoC Platform

  • Xu Guo
  • Patrick Schaumont
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5453)

Abstract

Most hardware/software codesigns of Elliptic Curve Cryptography only have one central control unit, typically a 32 bit or 8 bit processor core. With the ability of integrating several soft processor cores into one FPGA fabric, we can have a hierarchy of controllers in one SoC design. Compared to the previous codesigns trying to optimize the communication overhead between the central control unit and coprocessor over bus by using different bus protocols (e.g. OPB, PLB and FSL) or advanced techniques (e.g. DMA), our approach prevents overhead in bus transactions by introducing a local 8 bit microcontroller, PicoBlaze, in the coprocessor. As a result, the performance of the ECC coprocessor can be almost independent of the selection of bus protocols. To further accelerate the Uni-PicoBlaze based ECC SoC design, a Dual-PicoBlaze based architecture is proposed, which can achieve the maximum instruction rate of 1 instruction/cycle to the ECC datapath. Using design space exploration of a large number of system configurations of different architectures discussed in this paper, our proposed Dual-PicoBlaze based design also shows best trade-off between area and speed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gura, N., et al.: An End-to-End Systems Approach to Elliptic Curve Cryptography. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 349–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Koschuch, M., et al.: Hardware/Software Co-design of Elliptic Curve Cryptography on an 8051 Microcontroller. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 430–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Gura, N., et al.: Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Aigner, H., Bock, H., Hütter, M., Wolkerstorfer, J.: A low-cost ECC coprocessor for smartcards. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 107–118. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Batina, L., et al.: Hardware/software co-design for hyperelliptic curve cryptography (HECC) on the 8051 μP. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 106–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hodjat, A., Hwang, D., Batina, L., Verbauwhede, I.: A hyperelliptic curve crypto coprocessor for an 8051 microcontroller. In: SIPS 2005, pp. 93–98. IEEE, Los Alamitos (2005)Google Scholar
  7. 7.
    Sakiyama, K., Batina, L., Preneel, B., Verbauwhede, I.: Superscalar Coprocessor for High-Speed Curve-Based Cryptography. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 415–429. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cheung, R.C.C., Luk, W., Cheung, P.Y.K.: Reconfigurable Elliptic Curve Cryptosystems on a Chip. In: DATE 2005, vol. 1, pp. 24–29. IEEE, Los Alamitos (2005)Google Scholar
  9. 9.
    Klimm, A., Sander, O., Becker, J., Subileau, S.: A Hardware/Software Codesign of a Co-processor for Real-Time Hyperelliptic Curve Cryptography on a Spartan3 FPGA. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 188–201. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hemple, G., Hochberger, C.: A resource optimized Processor Core for FPGA based SoCs. In: DSD 2007, pp. 51–58. IEEE, Los Alamitos (2007)Google Scholar
  11. 11.
    AVR Core at opencores.org (2008), http://www.opencores.com/projects/avr_core/
  12. 12.
    Gaisler Research: LEON2 Processor User’s Manual (2005)Google Scholar
  13. 13.
    Hankerson, D., Menezes, A.J., Vanston, S.A.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)MATHGoogle Scholar
  14. 14.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Großschädl, J.: A low-power bit-serial multiplier for finite fields GF(2m). In: ISCAS 2001, vol. IV, pp. 37–40. IEEE, Los Alamitos (2001)Google Scholar
  16. 16.
    Kumar, S., Wollinger, T., Paar, C.: Optimum Digit Serial GF(2m) Multipliers for Curve-Based Cryptography. IEEE Transactions on Computers 55(10), 1306–1311 (2006)CrossRefGoogle Scholar
  17. 17.
    Rodríguez-Henríquez, F., Saqib, N.A., Díaz-Pérez, A., Koç, Ç.K.: Cryptographic Algorithms on Reconfigurable Hardware. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Schaumont, P., Ching, D., Verbauwhede, I.: An Interactive Codesign Environment for Domain-specific Coprocessors. ACM Transactions on Design Automation of Electronic Systems 11(1), 70–87 (2006)CrossRefGoogle Scholar
  19. 19.
    Schaumont, P., Verbauwhede, I.: A Component-based Design Environment for Electronic System-level Design. IEEE Design and Test of Computers Magazine, special issue on Electronic System-Level Design 23(5), 338–347 (2006)Google Scholar
  20. 20.
    Guo, X., Chen, Z., Schaumont, P.: Energy and Performance Evaluation of an FPGA-Based SoC Platform with AES and PRESENT Coprocessors. In: Bereković, M., Dimopoulos, N., Wong, S. (eds.) SAMOS 2008. LNCS, vol. 5114, pp. 106–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Becker, J.: Configurable systems-on-chip (CSoC). In: SBCCI 2002, pp. 379–384. IEEE, Los Alamitos (2002)Google Scholar
  22. 22.
    Koblitz, A. H., Koblitz, N., Menezes, A.: Elliptic Curve Cryptography: The Serpentine Course of a Paradigm Shift (2008), http://eprint.iacr.org/2008/390
  23. 23.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xu Guo
    • 1
  • Patrick Schaumont
    • 1
  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations