Creating Brain-Like Intelligence pp 139-150

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5436) | Cite as

Towards Learning by Interacting

  • Britta Wrede
  • Katharina J. Rohlfing
  • Marc Hanheide
  • Gerhard Sagerer

Abstract

Traditional robotics has treated the question of learning as a one way process: learning algorithms, especially imitation learning approaches, are based on observing and analysing the environment before carrying out the ‘learned’ action. In such scenarios the learning situation is restricted to uni-directional communication.

However, insights into the process of infant learning more and more reveal that interaction plays a major role in transferring relevant information to the learner. For example, in learning situations, the interactive situation has the potential to highlight parts of an action by linguistic and non-linguistic features and thus to guide the attention of the learner to those aspects that the tutor deems relevant for her current state of mind.

We argue that learning necessarily needs to be embedded in an interactive situation and that developmental robotics, in order to model engagement in interaction, needs to take the communicative context into account. We further propose that such an approach necessarily needs to take three aspects into account: (1) multi-modal integration at all processing levels (2) derivation of top-down strategies from bottom-up processes and (3) integration of single modules into an interactive system in order to facilite the first two desiderata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, D.A.: Understanding the link between joint attention and language. In: Moore, C., Dunham, P. (eds.) Joint attention: its origins and role in development, pp. 131–158. Lawrence Erlbaum, Mahwah (1995)Google Scholar
  2. 2.
    Breazeal, C., Scassellati, B.: A context-dependent attention system for a social robot. In: IJCAI 1999: Proc. Int. Joint Conf. on Artificial Intelligence, pp. 1146–1153. Morgan Kaufmann, San Francisco (1999)Google Scholar
  3. 3.
    Clark, H.H.: Arenas of Language Use. University of Chicago Press (1992)Google Scholar
  4. 4.
    Csibra, G., Gergely, G.: Social learning and social cognition: The case for pedagogy. In: Johnson, M., Munakata, Y. (eds.) Processes of Change in Brain and Cognitive Development. Attention and Performance, XXI. Oxford University Press, Oxford (2005)Google Scholar
  5. 5.
    Dautenhahn, K., Nehaniv, C. (eds.): Imitation and social learning in robots, humans and animals: Behavioural, social and communicative dimensions. Cambridge University Press, Cambridge (2007)Google Scholar
  6. 6.
    Driscoll, J., Peters, R., Cave, K.: A visual attention network for a humanoid robotGoogle Scholar
  7. 7.
    Duffy, B., Joue, G.: Intelligent robots: The question of embodiment. In: Proc. of the Brain-Machine Workshop (2000)Google Scholar
  8. 8.
    Farroni, T., Johnson, M.H., Brockbank, M., Simion, F.: Infants’ use of gaze direction to cue attention: The importance of perceived motion. Visual Cognition 7, 705–718 (2000)CrossRefGoogle Scholar
  9. 9.
    Fogel, A., Garvey, A.: Alive comunication. Infant Behavior and Development 30, 251–257 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    Gogate, L.J., Bahrick, L.E.: Intersensory redundancy and 7-month-old infants’ memory for arbitrary syllable-object relations. Infancy 2, 219–231 (2001)CrossRefGoogle Scholar
  11. 11.
    Gogate, L.J., Prince, C.: Is ”multimodal motherese” universal? In: The X International Congress of the International Association for the Study of Child Language (IASCL), Berlin, Germany, July 25-29 (2005)Google Scholar
  12. 12.
    Golinkoff, R.M., Hirsh-Pasek, K.: Baby wordsmith. Current Directions in Psychological Science 15, 30–33 (2006)CrossRefGoogle Scholar
  13. 13.
    Hashimoto, S.: Humanoid robots in waseda university - hadaly-2 and wabian. In: IARP First International Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Japan (1998)Google Scholar
  14. 14.
    Hirsh-Pasek, K., Golinkoff, R.M.: The Origins of Grammar: Evidence from Early Language Comprehension. MIT Press, Cambridge (1996)Google Scholar
  15. 15.
    Hollich, G., Hirsh-Pasek, K., Tucker, M.L., Golinkoff, R.M.: The change is afoot: Emergentist thinking in language acquisition. In: Anderson, C., Finnemann, N.O.E., Christiansen, P.V. (eds.) Downward Causation, pp. 143–178. Aarhus University Press (2000)Google Scholar
  16. 16.
    Hood, B.M., Willen, J.D., Driver, J.: Adult’s eyes trigger shifts of visual attention in human infants. Psychological Science 9, 131–134 (1998)CrossRefGoogle Scholar
  17. 17.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  18. 18.
    Johnson, M.H., Morton, J.: Biology and Cognitive Development: The case of face recognition. Blackwell Scientific Publications, Oxford (1991)Google Scholar
  19. 19.
    Kaplan, F., Hafner, V.V.: The challenges of joint attention. In: Proceedings of the Fourth International Workshop on Epigenetic Robotics, pp. 67–74 (2004)Google Scholar
  20. 20.
    Kaye, K.: Toward the origin of dialogue. In: Shaffer, H.R. (ed.) Studies in mother-infant interaction, pp. 89–119. Academic Press, London (1977)Google Scholar
  21. 21.
    Kuhl, P.: Is speech learning gated by the social brain? Developmental Science 10(1), 110–120 (2007)CrossRefPubMedGoogle Scholar
  22. 22.
    Kuhl, P.K.: Human adults and human infants show a ‘perceptual magnet effect’ for prototypes of speech categories, monkeys do not. Percept. Psychophys. 50, 93–107 (1991)CrossRefPubMedGoogle Scholar
  23. 23.
    Lemon, O., Pietquin, O.: Machine learning for spoken dialog systems. In: INTERSPEECH 2007, Antwerp, Belgium, pp. 2685–2688 (2007)Google Scholar
  24. 24.
    Li, S.: Multi-modal Interaction Management for a Robot Companion. Phd, Bielefeld University, Bielefeld (2007)Google Scholar
  25. 25.
    Masataka, N.: The onset of language. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  26. 26.
    McCartney, J.S., Panneton, R.: Four-month-olds’ discrimination of voice changes in multimodal displays as a function of discrimination protocol. Infancy 7 (2), 163–182 (2005)CrossRefGoogle Scholar
  27. 27.
    Moore, C., Angelopoulos, M., Bennett, P.: The role of movement in the development of joint visual attention. Infant Behavior and Development 2, 109–129 (1997)Google Scholar
  28. 28.
    Nagai, Y.: Joint attention development in infant-like robot based on head movement imitation. In: Proc. Int. Symposium on Imitation in Animals and Artifacts (AISB 2005), pp. 87–96 (2005)Google Scholar
  29. 29.
    Nagai, Y., Hosoda, K., Asada, M.: Joint attention emerges through bootstrap learning. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2003), pp. 168–173 (2003)Google Scholar
  30. 30.
    Nagai, Y., Rohlfing, K.J.: Computational analysis of motionese: What can infants learn from parental actions? In: Proc. Int. Conf. on Infant Studies (ICIS 2008) (March 2008)Google Scholar
  31. 31.
    Posner, M.I. (ed.): Cognitive neuroscience of attention. Guilford, New York (2004)Google Scholar
  32. 32.
    Rohlfing, K.J.: Cognitive foundations. In: Rickheit, G., Strohner, H. (eds.) Handbook of Applied Linguistics. Communicative competence of the individual, vol. 1. Mouton de Gruyter, Berlin (2008)Google Scholar
  33. 33.
    Scassellati, B.: Imitation and mechanisms of shared attention: A developmental structure for building social skills. In: Proc. Autonomous Agents 1998 workshop Agents in Interaction - Acquiring Competence through Imitation, Minneapolis, MO (August 1998)Google Scholar
  34. 34.
    Shic, F., Scassellati, B.: A behavioral analysis of computational models of visual attention. Int. Journal of Computer Vision 73(2), 159–177 (2007)CrossRefGoogle Scholar
  35. 35.
    Sternberg, R.J.: Cognitive Psychology. Wadsworth Publishing (2005)Google Scholar
  36. 36.
    Sun, R.: Desiderata for cognitive architectures. Philosophical Psychology 17(33), 341–373 (2004)CrossRefGoogle Scholar
  37. 37.
    Watson, J.S.: Smiling, cooing, and ”the game”. Merrill-Palmer Quarterly 18(4), 323–339 (1972)Google Scholar
  38. 38.
    Ziemke, T.: What’s that thing called embodiment. In: Proceedings of the 25th Meeting of the Cognitive Society (July/August 2003)Google Scholar
  39. 39.
    Zukow-Goldring, P.: Assisted imitation: Affordances, effectivities, and the mirror system in early language development. In: Arbib, M.A. (ed.) Action To Language via the Mirror Neuron System. Cambridge University Press, Cambridge (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Britta Wrede
    • 1
    • 2
  • Katharina J. Rohlfing
    • 1
    • 2
  • Marc Hanheide
    • 1
    • 2
  • Gerhard Sagerer
    • 1
    • 2
  1. 1.Applied Computer ScienceBielefeld UniversityGermany
  2. 2.Institute for Cognition and Robotics (CoR-Lab)BielefeldGermany

Personalised recommendations