Trying to Grasp a Sketch of a Brain for Grasping

  • Helge Ritter
  • Robert Haschke
  • Jochen J. Steil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5436)


Brain-like behavior is intimately connected with the ability to actively manage a rich set of interactions with the environment. Originating with very simple movements in homogeneous domains, the gradual evolution of movement sophistication endowed animals with an increasing ability to control their environment, ultimately advancing from the physical into the mental object domain with the advent of language-based communication and thinking. Appearing at the high complexity end of the physical movement evolution ladder, the ability of dextrous manipulation seems in the role of a “transition technology”, leading from movement control into the mental capabilities of language use and thinking. We therefore argue that manual actions and their replication in robots are positioned as a “Rosetta stone” for understanding cognition. Using the example of grasping, we contrast the “clockwork building style” of traditional engineering with more holistic, biologically inspired solutions for grasp synthesis and discuss the potential of the research field of “Manual Intelligence” and its speculative connections with language for making progress towards robots with more brain-like behavior.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    St. Amant, R., Wood, A.B.: Tool use for autonomous agents. In: Proc. National Conf. on Artificial Intelligence (AAAI), pp. 184–189 (2005)Google Scholar
  2. 2.
    Bicchi, A.: Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robotics Autom. 16(6), 652–662 (2000)CrossRefGoogle Scholar
  3. 3.
    Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings ICRA 2000, pp. 348–353 (2000)Google Scholar
  4. 4.
    Borst, C., Fischer, M., Hirzinger, G.: Calculating hand configurations for precision and pinch grasps. In: Proc. IEEE IROS 2002, pp. 1553–1559 (2002)Google Scholar
  5. 5.
    Borst, C., Fischer, M., Hirzinger, G.: Efficient and precise grasp planning for real world objects. In: Barbagli, F., Prattichizzo, D., Salisbury, K. (eds.) Multi-point Interaction with Real and Virtual Objects. Tracts in Advanced Robotics, vol. 18, pp. 91–111 (2005)Google Scholar
  6. 6.
    Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G.: Design and experiences with DLR Hand II. In: Proc. World Automation Congress, Sevilla (2004)Google Scholar
  7. 7.
    Castiello, U.: The Neuroscience of Grasping. Nat. Rev. Neurosci. 6, 726–736 (2005)CrossRefPubMedGoogle Scholar
  8. 8.
    Cook, S.W., Goldin-Meadow, S.: The Role of Gesture in Learning. Do Children Use Their Hands to Change Their Minds? J. Cognition and Development 7(2), 211–232 (2006)CrossRefGoogle Scholar
  9. 9.
    Cruse, H., Dean, J., Ritter, H. (eds.): Prerational Intelligence – Adaptive Behavior and Intelligent Systems Without Symbols and Logic. Studies in Cognitive Systems, vol. 1-3. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  10. 10.
    Cutkosky, M.R.: On Grasp choice, grasp models and the design of hands for manufacturing tasks. IEEE Trans. Robotics and Automation 5(3), 269–279 (1989)CrossRefGoogle Scholar
  11. 11.
    Dexter - Mechanism, Control and Developmental Programming,
  12. 12.
    Fellbaum, C. (ed.): WordNet – An Electronic Lexical Database. MIT Press, Cambridge (1998)Google Scholar
  13. 13.
    Folio, M.R., Fewell, R.R.: Peabody Developmental Motor Scales PDMS-2 Therapy Skill Builders Publishing (2000)Google Scholar
  14. 14.
    Gibson, J.J.: The ecological approach to visual perception. Houghton Miffin, Boston (1979)Google Scholar
  15. 15.
    Mouri, T., Kawasaki, H., Yoshikawa, K., Takai, J., Ito, S.: Anthropomorphic Robot Hand: Gifu Hand III. In: Proc. of Int. Conf. ICCAS 2002 (2002)Google Scholar
  16. 16.
    Gentilucci, M., Corballis, M.C.: From manual gesture to speech. A gradual transition. Neurosci. & Biobehav. Reviews 30(7), 949–960 (2006)CrossRefGoogle Scholar
  17. 17.
    Guerra-Filho, G., Fermüller, C., Aloimonos, Y.: Discovering a Language for Human Activity. In: Proc. AAAI 2005 Fall Symposium (2005)Google Scholar
  18. 18.
    Hamdorf, J.M., Hall, J.C.: Acquiring surgical skills. British Journal of Surgery (87), 28–37 (2000)CrossRefPubMedGoogle Scholar
  19. 19.
    Hauck, A., Passig, G., Schenk, T., Sorg, M., Färber, G.: On the performance of a biologically motivated visual controlstrategy for robotic hand-eye coordination. In: Proc. IROS 2000, vol. 3, pp. 1626–1632 (2000)Google Scholar
  20. 20.
    Hadara, U., Wenkert-Olenikc, D., Kraussd, R., Sorokerc, N.: Gesture and the Processing of Speech: Neuropsychological Evidence. Brain and Language 62(1), 107–126 (1998)CrossRefGoogle Scholar
  21. 21.
    Jacobsen, C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B.: Design of the Utah/MIT dexterous hand. In: ICRA Conf. Proceedings, pp. 1520–1532 (1986)Google Scholar
  22. 22.
    Jäger, G.: Applications of Game Theory in Linguistics. Language and Linguistics Compass 2, 1749–1767 (2008)Google Scholar
  23. 23.
    Jeannerod: The timing of natural prehension movments. J. Motor Behavior 16(3), 235–254 (1984)CrossRefGoogle Scholar
  24. 24.
    Kragic, D., Christensen, H.I.: Biologically motivated visual servoing and grasping for real world tasks IROS 2003. In: Proceedings of IROS 2003, vol. 4, pp. 3417–3422 (2003)Google Scholar
  25. 25.
    Morales, A. (2006), Experimental benchmarking of grasp reliability,
  26. 26.
    MacNeill, D.: Hand and Mind: what gestures reveal about thought. University of Chicago Press (1992)Google Scholar
  27. 27.
    Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dexterous manipulation. In: Proceedings ICRA 2000, pp. 255–262 (2000)Google Scholar
  28. 28.
    Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schaffer, A., Brunner, B., Hirschmuller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T., Zacharias, F., Hirzinger, G.: A Humanoid Two-Arm System for Dexterous Manipulation. In: 6th Humanoid Robots Conf., pp. 276–283 (2006)Google Scholar
  29. 29.
    Rehnmark, F., Bluethmann, W., Mehling, J., Ambrose, R.O., Diftler, M., Chu, M., Necessary, R.: Robonaut: The Short List of Technology Hurdles. Computer 38, 28–37 (2005)CrossRefGoogle Scholar
  30. 30.
    Röthling, F., Haschke, R., Steil, J.J., Ritter, H.: Platf orm Portable Anthropomorphic Grasping with the Bielefeld 20 DOF Shadow and 9 DOF TUM Hand. In: IEEE IROS Conference Proceedings (2007)Google Scholar
  31. 31.
    Röthling, F.: Real Robot Hand Grasping using Simulation-Based Optimisation of Portable Strategies Dissertation, Faculty of Technology, Bielefeld University (2007)Google Scholar
  32. 32.
    Rosen, J., Hannaford, B., Richards, C.G., Sinanan, M.N.: Markov modeling of minimally invasive surgery based on tool/tissueinteraction and force/torque signatures for evaluating surgical skills. IEEE Trans. Biomed. Engineering 48(5), 579–591 (2001)CrossRefGoogle Scholar
  33. 33.
    Santello, M., Flanders, M., Soechting, J.F.: Patterns of Hand Motion during Grasping and the Influence of Sensory Guidance. Journal of Neuroscience 22(4), 1426–1435 (2002)PubMedGoogle Scholar
  34. 34.
    Schack, T.: The cognitive architecture of complex movement. Int. J. of Sport and Exercise Psychology 2(4), 403–438 (2004)CrossRefGoogle Scholar
  35. 35.
    Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neurosci. Letters 391, 77–81 (2006)CrossRefGoogle Scholar
  36. 36.
    Shadow Robot Company, The Shadow Dextrous Hand,
  37. 37.
    Townsend, W.: The BarrettHand grasper – programmably flexible part handling and assembly Industrial. Robot 27(3), 181–188 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Helge Ritter
    • 1
  • Robert Haschke
    • 1
  • Jochen J. Steil
    • 1
  1. 1.Cognition and Robotics Laboratory (CoR-Lab) & Cognitive Interaction Technology Institute (CITEC)Bielefeld UniversityGermany

Personalised recommendations