Creating Brain-Like Intelligence pp 31-50

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5436) | Cite as

Stochastic Dynamics in the Brain and Probabilistic Decision-Making

  • Gustavo Deco
  • Edmund T. Rolls

Abstract

The stochastical spiking of neurons is a source of noise in the brain. We show that this noise is important in brain dynamics, by producing probabilistic settling into attractor states. This can account for probabilistic decision-making, which we show can be advantageous. Similar stochastical dynamics contributes to multistable states such as pattern rivalry and binocular rivalry. Stochastical dynamics also contributes to the detectability of signals in the brain that are close to threshold. Stochastical dynamics provides an interesting way to understand a number of important aspects of brain function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barto, A.G.: Learning by statistical cooperation of self-interested neuron-like computing elements, COINS Tech. Rep., University of Massachusetts, Department of Computer and Information Science, Amherst 85-11, 1– (1985)Google Scholar
  2. 2.
    Battaglia, F., Treves, A.: Stable and rapid recurrent processing in realistic autoassociative memories. Neural Computation 10, 431–450 (1998)CrossRefPubMedGoogle Scholar
  3. 3.
    Blake, R., Logothetis, N.K.: Visual competition. Nature Reviews Neuroscience 3, 13–21 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Brunel, N., Wang, X.J.: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience 11, 63–85 (2001)CrossRefPubMedGoogle Scholar
  5. 5.
    Carpenter, R.H.S., Williams, M.: Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 (1995)CrossRefPubMedGoogle Scholar
  6. 6.
    Dawkins, M.S.: Unravelling Animal Behaviour, 2nd edn. Longman, Harlow (1995)Google Scholar
  7. 7.
    de Lafuente, V., Romo, R.: Neuronal correlates of subjective sensory experience. Nature Neuroscience 12, 1698–1703 (2005)CrossRefGoogle Scholar
  8. 8.
    Deco, G., Rolls, E.T.: Object-based visual neglect: a computational hypothesis. European Journal of Neuroscience 16, 1994–2000 (2002)CrossRefPubMedGoogle Scholar
  9. 9.
    Deco, G., Rolls, E.T.: Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience 18, 2374–2390 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    Deco, G., Rolls, E.T.: A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research 44, 621–644 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    Deco, G., Rolls, E.T.: Attention, short term memory, and action selection: a unifying theory. Progress in Neurobiology 76, 236–256 (2005a)CrossRefPubMedGoogle Scholar
  12. 12.
    Deco, G., Rolls, E.T.: Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. Journal of Neurophysiology 94, 295–313 (2005b)CrossRefPubMedGoogle Scholar
  13. 13.
    Deco, G., Rolls, E.T.: Sequential memory: a putative neural and synaptic dynamical mechanism. Journal of Cognitive Neuroscience 17, 294–307 (2005c)CrossRefPubMedGoogle Scholar
  14. 14.
    Deco, G., Rolls, E.T.: Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cerebral Cortex 15, 15–30 (2005d)CrossRefPubMedGoogle Scholar
  15. 15.
    Deco, G., Rolls, E.T.: A neurophysiological model of decision-making and Weber’s law. European Journal of Neuroscience 24, 901–916 (2006)CrossRefPubMedGoogle Scholar
  16. 16.
    Deco, G., Rolls, E.T., Horwitz, B.: ‘What’ and ‘where’ in visual working memory: a computational neurodynamical perspective for integrating fMRI and single-neuron data. Journal of Cognitive Neuroscience 16, 683–701 (2004)CrossRefPubMedGoogle Scholar
  17. 17.
    Deco, G., Scarano, L., Soto-Faraco, S.: Weber’s law in decision-making: integrating behavioral data in humans with a neurophysiological model. Journal of Neuroscience 27, 11192–11200 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    Franco, L., Rolls, E.T., Aggelopoulos, N.C., Jerez, J.M.: Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics 96, 547–560 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    Glimcher, P.: The neurobiology of visual-saccadic decision making. Annual Reviews of Neuroscience 26, 133–179 (2003)CrossRefGoogle Scholar
  20. 20.
    Green, D., Swets, J.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)Google Scholar
  21. 21.
    Hernandez, A., Zainos, A., Romo, R.: Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA 79, 2554–2558 (1982)CrossRefGoogle Scholar
  23. 23.
    Horne, J.: Sleepfaring: a journey through the science of sleep. Oxford University Press, Oxford (2006)Google Scholar
  24. 24.
    Kacelnik, A., Brito e Abreu, F.: Risky choice and Weber’s Law. Journal of Theoretical Biology 194, 289–298 (1998)CrossRefPubMedGoogle Scholar
  25. 25.
    Kandel, E.R., Schwartz, J.H., Jessel, T.H. (eds.): Principles of Neural Science, 4th edn. Elsevier, Amsterdam (2000)Google Scholar
  26. 26.
    Krebs, J.R., Davies, N.B.: Behavioural Ecology, 3rd edn. Blackwell, Oxford (1991)Google Scholar
  27. 27.
    Loh, M., Rolls, E.T., Deco, G.: A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology (2007)Google Scholar
  28. 28.
    Maier, A., Logothetis, N.K., Leopold, D.A.: Global competition dictates local suppression in pattern rivalry. Journal of Vision 5, 668–677 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    Mattia, M., Del Giudice, P.: Population dynamics of interacting spiking neurons. Physical Review E 66, 051917 (2002)CrossRefGoogle Scholar
  30. 30.
    Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  31. 31.
    Maynard Smith, J.: Game theory and the evolution of behaviour. Behavioral and Brain Sciences 7, 95–125 (1984)CrossRefGoogle Scholar
  32. 32.
    Paenke, I., Sendhoff, B., Kawecki, T.: Influence of plasticity and learning on evolution under directional selection. American Naturalist 170 (2), 1–12 (2007)CrossRefGoogle Scholar
  33. 33.
    Panzeri, S., Rolls, E.T., Battaglia, F., Lavis, R.: Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons. Network: Computation in Neural Systems 12, 423–440 (2001)CrossRefGoogle Scholar
  34. 34.
    Ratcliff, R., Zandt, T.V., McKoon, G.: Connectionist and diffusion models of reaction time. Psychological Reviews 106, 261–300 (1999)CrossRefGoogle Scholar
  35. 35.
    Rolls, E.T.: Emotion Explained. Oxford University Press, Oxford (2005)CrossRefGoogle Scholar
  36. 36.
    Rolls, E.T.: A computational neuroscience approach to consciousness. Neural Networks (2008a) (in press)Google Scholar
  37. 37.
    Rolls, E.T.: Memory, Attention, and Decision-Making. A Unifying Computational Neuroscience Approach. Oxford University Press, Oxford (2008b)Google Scholar
  38. 38.
    Rolls, E.T., Deco, G.: Computational Neuroscience of Vision. Oxford University Press, Oxford (2002)Google Scholar
  39. 39.
    Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University Press, Oxford (1998)Google Scholar
  40. 40.
    Rolls, E.T., McCabe, C., Redoute, J.: Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cerebral Cortex (2007) doi 10.1093/cercor/bhm097Google Scholar
  41. 41.
    Romo, R., Salinas, E.: Touch and go: decision-making mechanisms in somatosensation. Annual Review of Neuroscience 24, 107–137 (2001)CrossRefPubMedGoogle Scholar
  42. 42.
    Romo, R., Salinas, E.: Flutter discrimination: neural codes, perception, memory and decision making. Nature Reviews Neuroscience 4, 203–218 (2003)CrossRefPubMedGoogle Scholar
  43. 43.
    Romo, R., Hernandez, A., Zainos, A., Lemus, L., Brody, C.D.: Neural correlates of decision-making in secondary somatosensory cortex. Nature Neuroscience 5, 1217–1225 (2002)CrossRefPubMedGoogle Scholar
  44. 44.
    Romo, R., Hernandez, A., Zainos, A., Salinas, E.: Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003)CrossRefPubMedGoogle Scholar
  45. 45.
    Romo, R., Hernandez, A., Zainos, A.: Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41, 165–173 (2004)CrossRefPubMedGoogle Scholar
  46. 46.
    Sigala, N., Logothetis, N.K.: Visual categorisation shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002)CrossRefPubMedGoogle Scholar
  47. 47.
    Sugrue, L.P., Corrado, G.S., Newsome, W.T.: Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Reviews Neuroscience 6, 363–375 (2005)CrossRefPubMedGoogle Scholar
  48. 48.
    Sutton, R.S., Barto, A.G.: Towards a modern theory of adaptive networks: expectation and prediction. Psychological Review 88, 135–170 (1981)CrossRefPubMedGoogle Scholar
  49. 49.
    Szabo, M., Almeida, R., Deco, G., Stetter, M.: Cooperation and biased competition model can explain attentional filtering in the prefrontal cortex. European Journal of Neuroscience 19, 1969–1977 (2004)CrossRefPubMedGoogle Scholar
  50. 50.
    Szabo, M., Deco, G., Fusi, S., Del Giudice, P., Mattia, M., Stetter, M.: Learning to attend: Modeling the shaping of selectivity in infero-temporal cortex in a categorization task. Biological Cybernetics 94, 351–365 (2006)CrossRefPubMedGoogle Scholar
  51. 51.
    Treves, A.: Mean-field analysis of neuronal spike dynamics. Network 4, 259–284 (1993)CrossRefGoogle Scholar
  52. 52.
    Usher, M., McClelland, J.: On the time course of perceptual choice: the leaky competing accumulator model. Psychological Reviews 108, 550–592 (2001)CrossRefGoogle Scholar
  53. 53.
    Wang, X.J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience 19, 9587–9603 (1999)PubMedGoogle Scholar
  54. 54.
    Wang, X.J.: Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002)CrossRefPubMedGoogle Scholar
  55. 55.
    Welford, A.T. (ed.): Reaction Times. Academic Press, London (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gustavo Deco
    • 1
  • Edmund T. Rolls
    • 2
  1. 1.Institució Catalana de Recerca i Estudis AvançatsUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Dept. of Experimental PsychologyUniversity of OxfordOxfordEngland

Personalised recommendations