Creating Brain-Like Intelligence pp 15-30

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5436) | Cite as

From Complex Networks to Intelligent Systems

  • Olaf Sporns

Abstract

Much progress has been made in our understanding of the structure and function of brain networks. Recent evidence indicates that such networks contain specific structural patterns and motifs and that these structural attributes facilitate complex neural dynamics. Such complex dynamics enables brain circuits to effectively integrate information, a fundamental capacity that appears to be associated with a broad range of higher cognitive functions. Complex networks underlying cognition are not confined to the brain, but extend through sensors and effectors to the external world. Viewed in a quantitative framework, the information processing capability of the brain depends in part on the embodied interactions of an autonomous system in an environment. Thus, the conceptual framework of complex networks might provide a basis for the understanding and design of future intelligent systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edelman, G.M.: Bright Air, Brilliant Fire. Basic Books, New York (1992)Google Scholar
  2. 2.
    Striedter, G.F.: Principles of Brain Evolution. Sinauer, Sunderland, MA (2005)Google Scholar
  3. 3.
    Barton, R.A.: Primate brain evolution: Integrating comparative, neurophysiological, and ethological data. Evol. Anthrop. 15, 224–236 (2006)CrossRefGoogle Scholar
  4. 4.
    Swanson, L.W.: Brain Architecture. Oxford University Press, Oxford (2003)Google Scholar
  5. 5.
    Greenspan, R.: An Introduction to Nervous Systems. Cold Spring Harbor Press (2007)Google Scholar
  6. 6.
    Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)CrossRefPubMedGoogle Scholar
  7. 7.
    Braitenberg, V., Schütz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, Berlin (1998)CrossRefGoogle Scholar
  8. 8.
    Douglas, R., Martin, K.: Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: A structural description of the human brain. PLoS Comput. Biol. 1, 245–251 (2005)CrossRefGoogle Scholar
  10. 10.
    Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. J-A Barth, Leipzig (1909)Google Scholar
  11. 11.
    Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping human whole-brain structural networks with diffusion mri. PLoS ONE 2(7), e597 (2007)CrossRefGoogle Scholar
  12. 12.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biology 6, e159 (2008)CrossRefGoogle Scholar
  13. 13.
    Itturia-Medina, Y., Canales-Rodriguez, E.-J., Melia-Garcia, L., Valdes-Hernandez, P.A., Martinez-Montes, E., Aleman-Gomez, Y., Sanchez-Bornot, J.M.: Characterizing brain anatomical connections using diffusion weighted mri and graph theory. NeuroImage 36, 645–660 (2007)CrossRefGoogle Scholar
  14. 14.
    Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., Beaulieu, C.: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex doi (2008)Google Scholar
  15. 15.
    Felleman, D.J., Essen, D.C.V.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)CrossRefPubMedGoogle Scholar
  16. 16.
    Scannell, J.W., Burns, G.A.P.C., Hilgetag, C.C., O’Neil, M.A., Young, M.P.: The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299 (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    Alm, E., Arkin, A.P.: Biological networks. Curr. Opin. Struct. Biol. 13, 193–202 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: Understanding the cell’s organization. Nature Reviews Genetics 5, 101–113 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    Hilgetag, C.C., Burns, G.A., O’Neill, M.A., Scannell, J.W., Young, M.P.: Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 91–110 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sporns, O., Honey, c.J., Kotter, R.: Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007)CrossRefGoogle Scholar
  21. 21.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefPubMedGoogle Scholar
  22. 22.
    Strogatz, S.: Exploring complex networks. Nature 410, 268–277 (2001)CrossRefPubMedGoogle Scholar
  23. 23.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)CrossRefGoogle Scholar
  24. 24.
    Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    Chklovskii, D., Schikorski, T., Stevens, C.: Wiring optimization in cortical circuits. Neuron. 34, 341–347 (2002)CrossRefPubMedGoogle Scholar
  26. 26.
    Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, e95 (2006)CrossRefGoogle Scholar
  27. 27.
    Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037 (1994)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: Integrating information in the brain. Trends Cogn. Sci. 2, 474–484 (1998)CrossRefPubMedGoogle Scholar
  29. 29.
    Tononi, G., Edelman, G.M.: Consciousness and complexity. Science 282, 1846–1851 (1998)CrossRefPubMedGoogle Scholar
  30. 30.
    Friston, K.J.: Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci. 25, 221–250 (2002)CrossRefPubMedGoogle Scholar
  31. 31.
    Friston, K.J.: Models of brain function in neuroimaging. Annu. Rev. Psychol. 56, 57–87 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapping 2, 56–78 (1994)CrossRefGoogle Scholar
  33. 33.
    Sporns, O.: Brain connectivity. Scholarpedia 2(10), 4695 (2007)CrossRefGoogle Scholar
  34. 34.
    Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995)CrossRefPubMedGoogle Scholar
  35. 35.
    Sporns, O., Tononi, G., Edelman, G.: Modeling perceptual grouping and figure-ground segregation by means of active reentrant circuits. Proc. Natl. Acad. Sci. USA 88, 129–133 (1991)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ross, W.D., Grossberg, S., Mingolla, E.: Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps. Neural Networks 13, 571–588 (2000)CrossRefPubMedGoogle Scholar
  37. 37.
    Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., Bressler, S.L.: Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by granger causality. Proc. Natl. Acad. Sci. USA 101, 9849–9854 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Steinmetz, P.N., Roy, A., Fitzgeerald, P.J., Hsiao, S.S., Johnson, K.O., Niebur, E.: Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404, 131–133 (2000)CrossRefGoogle Scholar
  39. 39.
    Sarntheim, J., Petsche, H., Rappelsberger, P., Shaw, G.L., von Stein, A.: Synchronization between prefrontal and posterior association cortex during human working memory. Proc. Natl. Acad. Sci. USA 95, 7092–7096 (1998)CrossRefGoogle Scholar
  40. 40.
    Engel, A.K., Singer, W.: Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001)CrossRefPubMedGoogle Scholar
  41. 41.
    Stam, C.J.: Functional connectivity patterns of human magnetoencephalographic recordings: A small-world network? Neurosci. Lett. 355, 25–28 (2004)CrossRefPubMedGoogle Scholar
  42. 42.
    Salvador, R., Suckling, J., Coleman, M., Pickard, J.D., Menon, D.K., Bullmore, E.T.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005b)CrossRefPubMedGoogle Scholar
  43. 43.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006)CrossRefPubMedGoogle Scholar
  44. 44.
    Bassett, D.S., Meyer-Lindenberg, A., Duke, S., Bullmore, T.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 103, 19518–19523 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional network. Phys. Rev. Lett. 94, 018102 (2005)CrossRefGoogle Scholar
  46. 46.
    Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in alzheimer’s disease. Cerebr. Cortex 17, 92–99 (2007)CrossRefGoogle Scholar
  47. 47.
    McIntosh, A.R.: Towards a network theory of cognition. Neural Netw. 13, 861–870 (2000)CrossRefPubMedGoogle Scholar
  48. 48.
    McIntosh, A.R.: Contexts and catalysts. Neuroinformatics 2, 175–181 (2004)CrossRefPubMedGoogle Scholar
  49. 49.
    Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 34, 537–541 (1995)CrossRefPubMedGoogle Scholar
  50. 50.
    Gusnard, D., Raichle, M.E.: Searching for a baseline: Functional imaging and the resting human brain. Nature Rev. Neurosci. 2, 685–694 (2001)CrossRefGoogle Scholar
  51. 51.
    Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104, 10240–10245 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sporns, O.: Complexity. Scholarpedia 2(10), 1623 (2007)CrossRefGoogle Scholar
  53. 53.
    Sporns, O., Tononi, G., Edelman, G.M.: Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10, 127–141 (2000)CrossRefPubMedGoogle Scholar
  54. 54.
    Sporns, O., Tononi, G.: Classes of network connectivity and dynamics. Complexity 7, 28–38 (2002)CrossRefGoogle Scholar
  55. 55.
    Tononi, G., Sporns, O., Edelman, G.M.: A complexity measure for selective matching of signals by the brain. Proc. Natl. Acad. Sci. USA 93, 3422–3427 (1996)CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tononi, G., Sporns, O., Edelman, G.M.: Measures of degeneracy and redundancy in biological networks. Proc. Natl. Acad. Sci. USA 96, 3257–3262 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Price, C.J., Friston, K.J.: Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–421 (2002)CrossRefPubMedGoogle Scholar
  58. 58.
    Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behaviour emerges from interactions of nervous system, body, and environment. Trends in Neurosciences 20, 553–557 (1997)CrossRefPubMedGoogle Scholar
  59. 59.
    Sporns, O.: Embodied cognition. In: Arbib, M. (ed.) Handbook of Brain Theory and Neural Networks, pp. 395–398. MIT Press, Cambridge (2003)Google Scholar
  60. 60.
    Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. LNCS, vol. 3139. Springer, Heidelberg (2004)Google Scholar
  61. 61.
    Varela, F.J., Thompson, E., Rosch, E.: The embodied mind: Cognitive science and human experience. MIT Press, Cambridge (1991)Google Scholar
  62. 62.
    Thelen, E., Smith, L.B.: A dynamic systems approach to the development of cognition and action. MIT Press, Cambridge (1994)Google Scholar
  63. 63.
    Lungarella, M., Pegors, T., Bulwinkle, D., Sporns, O.: Methods for quantifying the information structure of sensory and motor data. Neuroinformatics 3(3), 243–262 (2005)CrossRefPubMedGoogle Scholar
  64. 64.
    Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Comp. Biol. (2006)Google Scholar
  65. 65.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: A universal agent- centric measure of control. In: Proc. CEC. IEEE, Los Alamitos (2005)Google Scholar
  66. 66.
    Philipona, D., O’Regan, J.K., Nadal, J.P.: Is there something out there? inferring space from sensorimotor dependencies. Neural Computation 15(9), 2029–2050 (2003)CrossRefPubMedGoogle Scholar
  67. 67.
    Bertschinger, N., Olbricht, E., Ay, N., Jost, J.: Autonomy: An information theoretic perspective. BioSystems 91, 331–345 (2008)CrossRefPubMedGoogle Scholar
  68. 68.
    Parker, A.: In the Blink of an Eye. Perseus, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olaf Sporns
    • 1
  1. 1.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations