Creating Brain-Like Intelligence pp 314-327

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5436) | Cite as

Cognitive Adequacy in Brain-Like Intelligence

  • Christoph S. Herrmann
  • Frank W. Ohl


A variety of disciplines have dealt with the design of intelligent algorithms – among them Artificial Intelligence and Robotics. While some approaches were very successful and have yielded promising results, others have failed to do so which was — at least partly — due to inadequate architectures and algorithms that were not suited to mimic the behavior of biological intelligence. Therefore, in recent years, a quest for ”brain-like” intelligence has arosen. Soft- and hardware are supposed to behave like biological brains — ideally like the human brain. This raises the questions of what exactly defines the attribute ”brain-like”, how can the attribute be implemented and how tested. This chapter suggests the concept of cognitive adequacy in order to get a rough estimate of how ”brain-like” an algorithm behaves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell, S., Norvig, P.: Artificial Intelligence: A modern approach. Prentice-Hall, Englewood Cliffs (1995)Google Scholar
  2. 2.
    Crevier, D.: AI: The Tumultuous Search for Artificial Intelligence. Basic Books (1993)Google Scholar
  3. 3.
    Dreyfus, H.: What Computers Can’t Do: The Limits of Artificial Intelligence. Harpercollins (1978)Google Scholar
  4. 4.
    Rumelhart, D.E., McClelland, J. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1987)Google Scholar
  5. 5.
    Fuster, J.M.: Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann. N. Y. Acad. Sci. 608, 318–329 (1990)CrossRefPubMedGoogle Scholar
  6. 6.
    Merleau–Ponty, M.: The structure of behavior. Beacon (1942)Google Scholar
  7. 7.
    Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied artificial intelligence. LNCS, vol. 3139. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Squire, L.R., Kandel, E.R.: Memory. From mind to molecules. Scientific American Library (1999)Google Scholar
  9. 9.
    Ohl, F.W., Scheich, H., Freeman, W.J.: Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848), 733–736 (2001)CrossRefPubMedGoogle Scholar
  10. 10.
    Parasuraman, R.: The attentive brain. MIT Press, Cambridge (1998)Google Scholar
  11. 11.
    Minsky, M.L.: The emotion machine: commonsense thinking, artificial intelligence, and the future of the human mind. Simon and Schuster (2006)Google Scholar
  12. 12.
    Bothe, H.W., Samii, M., Eckmiller, R. (eds.): Neurobionics: An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System. Elsevier, Amsterdam (1993)Google Scholar
  13. 13.
    Ohl, F.W., Scheich, H.: Chips in your head. Scientific American Mind, 64–69 (April/May 2007)Google Scholar
  14. 14.
    Abbott, A.: Neuroprosthetics: in search of the sixth sense. Nature 442(7099), 125–127 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    Shastri, L., Ajjanagadde, V.: From associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal synchrony. Behavioural Brain Sciences 16, 417–494 (1993)CrossRefGoogle Scholar
  16. 16.
    Johnson-Laird, P.N., Byrne, R.M.J.: Deduction. Lawrence Erlbaum Ass., Mahwah (1991)Google Scholar
  17. 17.
    Bibel, W.: Perspectives on automated deduction. In: Automated reasoning: Essays in the honor of Woody Bledsoe, pp. 77–104. Kluwer Academic, Dordrecht (1991)CrossRefGoogle Scholar
  18. 18.
    Hölldobler, S., Thielscher, M.: On the adequateness of AI-systems. In: Plander, I. (ed.) International Conference on AIICSR (1994)Google Scholar
  19. 19.
    Beringer, A., Hölldobler, S.: On the adequateness of the connection method. In: AAAI National Conference on Artificial Intelligence (1993)Google Scholar
  20. 20.
    Herrmann, C.S., Reine, F.: Considering adequacy in neural network learning. In: Proceedings of ICNN 1996 (IEEE International Conference on Neural Networks) (1996)Google Scholar
  21. 21.
    Posner, M.I.: Chronometric explorations of mind. Oxford University Press, Oxford (1986)Google Scholar
  22. 22.
    Gazzaniga, M.S.: Cognitive neuroscience. The biology of the mind. Norton (2002)Google Scholar
  23. 23.
    Anderson, J.R.: Rules of the mind. Lawrence Earlbaum Associates (1993)Google Scholar
  24. 24.
    Luce, R.D.: Response times. Oxford Science Publications (1986)Google Scholar
  25. 25.
    Herrmann, C.S., Mecklinger, A.: Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features. Int. J. Psychophysiol. 38(3), 265–281 (2000)CrossRefPubMedGoogle Scholar
  26. 26.
    Herrmann, C.S., Mecklinger, A.: Gamma activity in human EEG is related to high-speed memory comparisons during object selective attention. Visual Cognition 8(3/4/5), 593–608 (2001)CrossRefGoogle Scholar
  27. 27.
    Ohl, F.W., Scheich, H.: Learning-induced plasticity in the auditory cortex. Current Opinion in Neurobiology 15, 470–477 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    Stroop, J.R.: Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18, 643–662 (1935)CrossRefGoogle Scholar
  29. 29.
    Senkowski, D., Herrmann, C.S.: Effects of task difficulty on evoked gamma activity and erps in a visual discrimination task. Clin. Neurophysiol. 113(11), 1742–1753 (2002)CrossRefPubMedGoogle Scholar
  30. 30.
    Kraft, J.M., Brainard, D.H.: Mechanisms of color constancy under nearly natural viewing. Proc. Natl. Acad. Sci. USA 96(1), 307–312 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Block, J.R., Yuker, H.E.: Can you believe your eyes? Over 250 illusions and other visual oddities. Tylor and Francis (1989)Google Scholar
  32. 32.
    Strüber, D., Herrmann, C.S.: Meg alpha activity decrease reflects destabilization of multistable percepts. Brain Res. Cogn. Brain Res. 14(3), 370–382 (2002)CrossRefPubMedGoogle Scholar
  33. 33.
    Freeman, W.J.: Neurodynamics. Springer, Heidelberg (2000)Google Scholar
  34. 34.
    Haken, H.: Synergetic Computers and Cognition. A top-down approach to neural nets. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Fürstenau, N.: A chaotic attractor model of cognitive multistability. IEEE International Conference on Systems, Man, and Cybernetics 1, 853–859 (2004)Google Scholar
  36. 36.
    Wilson, H.R.: Spikes, decisions, and actions. Oxford University Press, Oxford (1999)Google Scholar
  37. 37.
    Searle, J.R.: Minds, Brains and Science. Hardvard University Press (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christoph S. Herrmann
    • 1
  • Frank W. Ohl
    • 2
  1. 1.Institute for Psychology Biological Psychology LabOtto-von-Guericke-University MagdeburgMagdeburgGermany
  2. 2.Leibniz Institute for NeurobiologyMagdeburgGermany

Personalised recommendations