Creating Brain-Like Intelligence pp 192-214

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5436) | Cite as

Towards Cognitive Robotics

  • Christian Goerick

Abstract

In this paper we review our research aiming at creating a cognitive humanoid. We describe our understanding of the core elements of a processing architecture for such kind of an artifact. After these conceptual considerations we present our research results on the form of the series of elements and systems that have been researched and created.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pirjanian, P.: Behavior coordination mechanisms – state-of-the-art. TR IRIS-99-375. Technical report, Institute of Robotics and Intelligent Systems, School of Engineering, University of Southern California (1999)Google Scholar
  2. 2.
    Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolutionary Computation 11(2), 151–180 (2007)CrossRefGoogle Scholar
  3. 3.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)Google Scholar
  4. 4.
    Gienger, M., Janßen, H., Goerick, C.: Task-oriented whole body motion for humanoid robots. In: IEEE/RSJ Int. Conf. on Humanoid Robots (2005)Google Scholar
  5. 5.
    Sugiura, H., Gienger, M., Janßen, H., Goerick, C.: Real-time self collision avoidance for humanoids by means of nullspace criteria and task intervals. In: IEEE-RAS Int. Conf. on Humanoid Robots. IEEE Press, Los Alamitos (2006)Google Scholar
  6. 6.
    Bolder, B., Dunn, M., Gienger, M., Janßen, H., Sugiura, H., Goerick, C.: Visually guided whole body interaction. In: IEEE Int. Conf. on Robotics and Automation (2007)Google Scholar
  7. 7.
    Nishiwaki, K., Kuga, M., Kagami, S., Inaba, N., Inoue, H.: Whole-body cooperative balanced motion generation for reaching. In: IEEE/RSJ Int. Conf. on Humanoid Robots (2004)Google Scholar
  8. 8.
    Sian, N., Yokoi, K., Kajita, S., Tanie, K.: A framework for remote execution of whole body motions for humanoid robots. In: IEEE/RSJ Int. Conf. on Humanoid Robots (2004)Google Scholar
  9. 9.
    Goerick, C., Mikhailova, I., Wersing, H., Kirstein, S.: Biologically motivated visual behaviors for humanoids: Learning to interact and learning in interaction. In: IEEE/RSJ Int. Conf. on Humanoid Robots (2006)Google Scholar
  10. 10.
    Couyoumdjian, A., Di Nocera, F., Ferlazzo, F.: Functional representation of 3d space in endogenous attention shifts. The quaterly Journal of Experimental Psychology 56a(1), 155–183 (2003)CrossRefGoogle Scholar
  11. 11.
    Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Goerick, C., Steil, J.J., Ritter, H., Körner, E.: A biologically motivated system for unconstrained online learning of visual objects. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 508–517. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Ude, A., Cheng, G.: Object recognition on humanoids with foveated vision. In: IEEE/RSJ Int. Conf. on Humanoid Robots (2004)Google Scholar
  13. 13.
    Goerick, C., Bolder, B., Janßen, H., Gienger, M., Sugiura, H., Dunn, M., Mikhailova, I., Rodemann, T., Wersing, H., Kirstein, S.: Towards incremental hierarchical behavior generation for humanoids. In: Proceedings of the IEEE/RSJ International Conference on Humanoid Robots (Humanoids 2007), Pittsburgh, USA (2007)Google Scholar
  14. 14.
    Prescott, T.J., Redgrave, P., Gurney, K.: Layered control architectures in robots and vertebrates. Adaptive Behavior 7, 99–127 (1999)CrossRefGoogle Scholar
  15. 15.
    Pfeiffer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Brock, O., Fagg, A., Grupen, R., Platt, R., Rosenstein, M., Sweeney, J.: A framework for learning and control in intelligent humanoid robots. International Journal of Humanoid Robotics 2(3) (2005)Google Scholar
  17. 17.
    Arkin, R.C., Fujita, M., Takagi, T., Hasegawa, R.: An ethological and emotional basis for human-robot interaction. Robotics and Autonomous Systems (3-4), 191–201 (2003)CrossRefGoogle Scholar
  18. 18.
    Chernova, S., Arkin, R.C.: From deliberative to routine behaviors: A cognitively inspired action-selection mechanism for routine behavior capture. Adaptive Behavior 15(2), 199–216 (2007)CrossRefGoogle Scholar
  19. 19.
    Asfour, T., Regenstein, K., Azad, P., Schröder, J., Bierbaum, A., Vahrenkamp, N., Dillmann, R.: ARMAR-III: An integrated humanoid platform for sensory-motor control. In: Proceedings of the IEEE/RSJ International Conference on Humanoid Robots (Humanoids 2006), Genoa, Italy (2006)Google Scholar
  20. 20.
    Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots. MIT/AAAI Press (1997)Google Scholar
  21. 21.
    Chouinard, P.A., Paus, T.: The primary motor and premotor areas of the human cerebral cortex. The Neuroscientist 12(2), 143–152 (2006)CrossRefPubMedGoogle Scholar
  22. 22.
    Swanson, L.W.: Brain Architecture: Understanding the Basic Plan. Oxford University Press, Oxford (2002)Google Scholar
  23. 23.
    Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, a.C., Lamantia, A.-S., McNamara, J.O., Williams, S.M. (eds.): Neuroscience. Sinauer Associates (2004)Google Scholar
  24. 24.
    Sommer, M.A., Wurtz, R.H.: What the brain stem tells the frontal cortex. I. oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. Journal of Neurophysiology 91, 1381–1402 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F., Zago, M.: Multiple levels of representation of reaching in the parieto-frontal network. Cerebral Cortex 13, 1009–1022 (2003)CrossRefPubMedGoogle Scholar
  26. 26.
    Goerick, C., Wersing, H., Mikhailova, I., Dunn, M.: Peripersonal space and object recognition for humanoids. In: Proceedings of the IEEE/RSJ International Conference on Humanoid Robots (Humanoids 2005), Tsukuba, Japan (2005)Google Scholar
  27. 27.
    Rodemann, T., Heckmann, M., Schölling, B., Joublin, F., Goerick, C.: Real-time sound localization with a binaural head-system using a biologically-inspired cue-triple mapping. In: Proceedings of the International Conference on Intelligent Robots & Systems (IROS). IEEE, Los Alamitos (2006)Google Scholar
  28. 28.
    Wersing, H., Kirstein, S., Goetting, M., Brandl, H., Dunn, M., Mikhailova, I., Goerick, C., Steil, J.J., Ritter, H., Körner, E.: Online learning of objects in a biologically motivated visual architecture. International Journal of Neural Systems 17(4), 219–230 (2007)CrossRefPubMedGoogle Scholar
  29. 29.
    Bergener, T., Bruckhoff, C., Dahm, P., Janßen, H., Joublin, F., Menzner, R., Steinhage, A., von Seelen, W.: Complex behavior by means of dynamical systems for an anthropomorphic robot. Neural Networks (7), 1087–1099 (1999)CrossRefGoogle Scholar
  30. 30.
    Ceravola, A., Stein, M., Goerick, C.: Researching and developing a real-time infrastructure for intelligent systems - evolution of an integrated approach. Robotics and Autonomous Systems 56(1), 14–28 (2008)CrossRefGoogle Scholar
  31. 31.
    Mikhailova, I., von Seelen, W., Goerick, C.: Usage of general developmental principles for adaptation of reactive behavior. In: Proceedings of the 6th International Workshop on Epigenetic Robotics, Paris, France (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Goerick
    • 1
  1. 1.Honda Research Institute Europe GmbHOffenbachGermany

Personalised recommendations