Local Identification of Piecewise Deterministic Models of Genetic Networks

  • Eugenio Cinquemani
  • Andreas Milias-Argeitis
  • Sean Summers
  • John Lygeros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5469)


We address the identification of genetic networks under stationary conditions. A stochastic hybrid description of the genetic interactions is considered and an approximation of it in stationary conditions is derived. Contrary to traditional structure identification methods based on fitting deterministic models to several perturbed equilibria of the system, we set up an identification strategy which exploits randomness as an inherent perturbation of the system. Estimation of the dynamics of the system from sampled data under stability constraints is then formulated as a convex optimization problem. Numerical results are shown on an artificial genetic network model. While our methods are conceived for the identification of interaction networks, they can as well be applied in the study of general piecewise deterministic systems with randomly switching inputs.


Piecewise deterministic systems state-space identification Markov processes sampled systems convex optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 69–105 (2002)Google Scholar
  2. 2.
    Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G., Rubin, H., Schug, J.: Hybrid modeling and simulation of biological systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    de Jong, H., Gouze, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Hybrid modeling and simulation of genetic regulatory networks: A qualitative approach. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 267–282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Drulhe, S., Ferrari-Trecate, G., de Jong, H., Viari, A.: Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 184–199. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in escherichia coli. Bioinformatics 21(1), i19–i28 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-notch protein signaling. IET Systems Biology 1(1), 170–183 (2004)CrossRefGoogle Scholar
  7. 7.
    Longo, D., Hasty, J.: Dynamics of single-cell gene expression. Molecular Systems Biology 2 (2006)Google Scholar
  8. 8.
    Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)CrossRefGoogle Scholar
  9. 9.
    McAdams, H.H., Arkin, A.: It’s a noisy business! genetic regulation at the nanomolar scale. Trends in Genetics 15(2), 65–69 (2002)CrossRefGoogle Scholar
  10. 10.
    Paulsson, J.: Models of stochastic gene expression. Physics of Life Reviews 2(2), 157–175 (2005)CrossRefGoogle Scholar
  11. 11.
    Samad, H.E., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modeling of gene regulatory networks. International Journal of Robust Nonlinear Control 15, 691–711 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cinquemani, E., Milias-Argeitis, A., Summers, S., Lygeros, J.: Stochastic dynamics of genetic networks: modelling and parameter identification. Bioinformatics 24(23), 2748–2754 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zeiser, S., Franz, U., Wittich, O., Liebscher, V.: Simulation of genetic networks modelled by piecewise deterministic markov processes. IET Systems Biology 2, 113–135 (2008)CrossRefGoogle Scholar
  14. 14.
    Perkins, T., Hallett, M., Glass, L.: Inferring models of gene expression dynamics. Journal of Theoretical Biology 230(3), 289–299 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fujarewicz, K., Kimmel, M., Swierniak, A.: On fitting of mathematical models of cell signaling pathways using adjoint systems. Mathematical Biosciences and Engineering 2(3), 527–534 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dunlop, M., Franco, E., Murray, R.M.: A multi-model approach to identification of biosynthetic pathways. In: Proceedings of the 26th American Control Conference (2007)Google Scholar
  17. 17.
    Cinquemani, E., Porreca, R., Ferrari-Trecate, G., Lygeros, J.: Subtilin production by bacillus subtilis: Stochastic hybrid models and parameter identification. IEEE Transactions on Automatic Control, Special Issue on Systems Biology 53, 38–50 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Reinker, S., Altman, R., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IET Systems Biology 153, 168–178 (2006)CrossRefGoogle Scholar
  19. 19.
    Tian, T., Xu, S., Gao, J., Burrage, K.: Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics 23(1), 84–91 (2007)CrossRefGoogle Scholar
  20. 20.
    Golightly, A., Wilkinson, D.: Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics (61), 781–788 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zavlanos, M.M., Julius, A., Boyd, S.P., Pappas, G.J.: Identification of stable genetic networks using convex programming. In: Proceedings of the American Control Conference, Seattle, WA (June 2008)Google Scholar
  22. 22.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Molecular Systems Biology 3(78)Google Scholar
  23. 23.
    Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling. Science 301(5629), 102–105 (2003)CrossRefGoogle Scholar
  24. 24.
    van Overschee, P., De Moor, B.L.: Subspace Identification for Linear Systems: Theory - Implementation - Applications. Springer, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Golding, I., Paulsson, J., Zawilski, S.M., Cox, E.C.: Real-time kinetics of gene activity in individual bacteria. Cell 123(6), 1025–1036 (2005)CrossRefGoogle Scholar
  26. 26.
    Cai, L., Friedman, N., Xie, X.S.: Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006)CrossRefGoogle Scholar
  27. 27.
    Davis, M.: Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. Journal of the Royal Statistical Society B 46(3), 353–388 (1984)zbMATHGoogle Scholar
  28. 28.
    Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lacy, S.L., Bernstein, D.S.: Subspace identification with guaranteed stability using constrained optimization. IEEE Transactions on Automatic Control 48(7) (2003)Google Scholar
  30. 30.
    Smith, M.I.: A Schur algorithm for computing matrix pth roots. SIAM Journal on Matrix Analysis and Applications 24(4), 971–989 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Bini, D.A., Higham, N.J., Meini, B.: Algorithms for the matrix pth root. Numerical Algorithms 39, 349–378 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eugenio Cinquemani
    • 1
  • Andreas Milias-Argeitis
    • 1
  • Sean Summers
    • 1
  • John Lygeros
    • 1
  1. 1.Institut für Automatik, ETH ZurichSwitzerland

Personalised recommendations