Simultaneous Optimal Control and Discrete Stochastic Sensor Selection

  • D. Bernardini
  • D. Muñoz de la Peña
  • A. Bemporad
  • E. Frazzoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5469)

Abstract

In this paper we present the problem of combining optimal control with efficient information gathering in an uncertain environment. We assume that the decision maker has the ability to choose among a discrete set of sources of information, where the outcome of each source is stochastic. Different sources and outcomes determine a reduction of uncertainty, expressed in terms of constraints on system variables and set-points, in different directions. This paper proposes an optimization-based decision making algorithm that simultaneously determines the best source to query and the optimal sequence of control moves, according to the minimization of the expected value of an index that weights both dynamic performance and the cost of querying. The problem is formulated using stochastic programming ideas with decision-dependent scenario trees, and a solution based on mixed-integer linear programming is presented. The results are demonstrated on a simple supply-chain management example with uncertain market demand.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bemporad, A., Borrelli, F., Morari, M.: Min-max control of constrained uncertain discrete-time linear systems. IEEE Transactions On Automatic Control 48(9), 1600–1606 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bemporad, A., Giorgetti, N.: Logic-based methods for optimal control of hybrid systems. IEEE Transactions On Automatic Control 51(6), 963–976 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bemporad, A., Muñoz de la Peña, D., Piazzesi, P.: Optimal control of investments for quality of supply improvement in electrical energy distribution networks. Automatica 42(8), 1331–1336 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Bertsekas, D.P., Tsitsiklis, J.T.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)MATHGoogle Scholar
  5. 5.
    Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)MATHGoogle Scholar
  6. 6.
    Blei, D.M., Kaelbling, L.P.: Shortest paths in a dynamic uncertain environment. In: IJCAI Workshop on Adaptive Spatial Representations of Dynamic Environments (1999)Google Scholar
  7. 7.
    Chong, C.Y., Kumar, S.P.: Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE 91, 1247–1256 (2003)CrossRefGoogle Scholar
  8. 8.
    Perea-López, E., Ydstie, B.E., Grossmann, I.E.: A model predictive control strategy for supply chain optimization. Computers and Chemical Engineering 27(8-9), 1201–1218 (2003)CrossRefGoogle Scholar
  9. 9.
    Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)MATHGoogle Scholar
  10. 10.
    Brauna, M.W., Rivera, D.E., Floresa, M.E., Carlyleb, W.M., Kempf, K.G.: A Model Predictive Control framework for robust management of multi-product, multi-echelon demand networks. Annual Reviews in Control 27(2), 229–245 (2003)CrossRefGoogle Scholar
  11. 11.
    Muñoz de la Peña, D., Alamo, T., Bemporad, A., Camacho, E.F.: A decomposition algorithm for feedback min-max model predictive control. IEEE Transactions On Automatic Control 51(10), 1688–1692 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Neumann, P.: Communication in industrial automation - what is going on? Control Engineering Practice 15, 1332–1347 (2007)CrossRefGoogle Scholar
  13. 13.
    Puterman, M.L.: Markov Decision Processes. Wiley and Sons, Chichester (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Ross, S.: Introduction to Stochastic Dynamic Programming. Academic Press, London (1983)MATHGoogle Scholar
  15. 15.
    Sahinidis, N.V.: Optimization under uncertainty: State-of-the-art and opportunities. Computers & Chemical Engineering 28(6-7), 971–983 (2004)CrossRefGoogle Scholar
  16. 16.
    Scokaert, P.O.M., Mayne, D.Q.: Min-max feedback model predictive control for constrained linear systems. IEEE Transactions On Automatic Control 43, 1136–1142 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sutton, R.S., Barto, A.T.: Reinforcement Learning. MIT Press, Cambridge (1998)Google Scholar
  18. 18.
    Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Transactions on Automatic Control 49, 1056–1068 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Williams, H.P.: Model Building in Mathematical Programming, 3rd edn. John Wiley & Sons, Chichester (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Bernardini
    • 1
  • D. Muñoz de la Peña
    • 2
  • A. Bemporad
    • 1
  • E. Frazzoli
    • 3
  1. 1.Department of Information EngineeringUniversity of SienaItaly
  2. 2.Dep. de Ingeniería de Sistemas y AutomáticaUniversity of SevilleSpain
  3. 3.Massachusetts Institute of TechnologyUSA

Personalised recommendations