Advertisement

Optimal Performance of Second-Order Multidimensional ICA

  • Dana Lahat
  • Jean-François Cardoso
  • Hagit Messer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5441)

Abstract

Independent component analysis (ICA) and blind source separation (BSS) deal with extracting mutually-independent elements from their observed mixtures. In “classical” ICA, each component is one-dimensional in the sense that it is proportional to a column of the mixing matrix. However, this paper considers a more general setup, of multidimensional components. In terms of the underlying sources, this means that the source covariance matrix is block-diagonal rather than diagonal, so that sources belonging to the same block are correlated whereas sources belonging to different blocks are uncorrelated. These two points of view —correlated sources vs. multidimensional components— are considered in this paper. The latter offers the benefit of providing a unique decomposition. We present a novel, closed-form expression for the optimal performance of second-order ICA in the case of multidimensional elements. Our analysis is verified through numerical experiments.

Keywords

Independent component analysis blind source separation correlated sources multidimensional components performance analysis joint block diagonalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abed-Meraim, K., Belouchrani, A.: Algorithms for joint block diagonalization. In: Proceedings of EUSIPCO 2004, Vienna, Austria, pp. 209–212 (2004)Google Scholar
  2. 2.
    Bousbia-Salah, H., Belouchrani, A., Abed-Meraim, K.: Blind separation of convolutive mixtures using joint block diagonalization. In: Sixth International Symposium on Signal Processing and its Applications, vol. 1, pp. 13–16 (August 2001)Google Scholar
  3. 3.
    Cardoso, J.-F.: Multidimensional independent component analysis. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 12-15 May, vol. 4, pp. 1941–1944 (1998)Google Scholar
  4. 4.
    Cardoso, J.-F., Martin, M., Delabrouille, J., Betoule, M., Patanchon, G.: Component separation with flexible models. Application to the separation of astrophysical emissions. In: IEEE J-STSP. Special Issue on: Signal Processing for Astronomical and Space Research Applications (October 2008), http://arxiv.org/abs/0803.1814
  5. 5.
    Févotte, C., Theis, F.J.: Pivot selection strategies in jacobi joint block-diagonalization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 177–184. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ghennioui, H., El Mostafa, F., Thirion-Moreau, N., Adib, A., Moreau, E.: A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources. Signal Processing Letters, IEEE 14(11), 860–863 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lahat, D., Cardoso, J.-F., Messer, H.: Multidimensional ICA: Second-order methods and applications (in preparation)Google Scholar
  8. 8.
    Ossadtchi, A., Baillet, S., Mosher, J.C., Thyerlei, D., Sutherling, W., Leahy, R.M.: Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering. Clin. Neurophysiol. 115(3), 508–522 (2004)CrossRefGoogle Scholar
  9. 9.
    Pham, D.T.: Blind separation of cyclostationary sources using joint block approximate diagonalization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 244–251. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Pham, D.-T., Cardoso, J.-F.: Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Sig. Proc. 49(9), 1837–1848 (2001)CrossRefGoogle Scholar
  11. 11.
    Pham, D.-T., Garat, P.: Blind separation of mixtures of independent sources through a quasi- maximum likelihood approach. IEEE Trans. Sig. Proc. 45(7), 1712–1725 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Vollgraf, R., Obermayer, K.: Multi-dimensional ICA to separate correlated sources. In: Neural Information Processing Systems (NIPS 2001), vol. 14, pp. 993–1000. MIT Press, Cambridge (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dana Lahat
    • 1
  • Jean-François Cardoso
    • 2
  • Hagit Messer
    • 1
  1. 1.School of Electrical EngineeringTel-Aviv UniversityTel-AvivIsrael
  2. 2.LTCITELECOM ParisTech and CNRSParisFrance

Personalised recommendations