Advertisement

Iterative-Shift Cluster-Based Time-Frequency BSS for Fractional-Time-Delay Mixtures

  • Matthieu Puigt
  • Yannick Deville
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5441)

Abstract

We recently proposed several time-frequency blind source separation methods applicable to attenuated and delayed mixtures. They were limited by heuristics and only processed integer-sample time shifts. In this paper, we propose and test improvements of these approaches based on modified clustering techniques for scale coefficients and a new iterative method to estimate possibly non-integer and large delays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Grady, P.D., Pearlmutter, B.A., Rickard, S.: Survey of sparse and non-sparse methods in source separation. International Journal of Imaging Systems and Technology 15, 18–33 (2005)CrossRefGoogle Scholar
  2. 2.
    Yilmaz, Ö., Rickard, S.: Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing 52(7), 1830–1847 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Saab, R., Yilmaz, Ö., McKeown, M.J., Abugharbieh, R.: Underdetermined sparse blind source separation with delays. In: Proc. of SPARS 2005 (2005)Google Scholar
  4. 4.
    Puigt, M., Deville, Y.: Time-frequency ratio-based blind separation methods for attenuated and time-delayed sources. MSSP 19(6), 1348–1379 (2005)Google Scholar
  5. 5.
    Puigt, M., Deville, Y.: A time-frequency correlation-based blind source separation method for time-delayed mixtures. In: Proc. of ICASSP 2006, vol. 5, pp. 853–856 (2006)Google Scholar
  6. 6.
    Arberet, S., Gribonval, R., Bimbot, F.: A robust method to count and locate audio sources in a stereophonic linear anechoic mixture. In: Proc. of ICASSP 2007, vol. 3, pp. 745–748 (2007)Google Scholar
  7. 7.
    Deville, Y., Bissessur, D., Puigt, M., Hosseini, S., Carfantan, H.: A time-scale correlation-based blind separation method applicable to correlated sources. In: Proc. of ESANN 2006, pp. 337–344 (2006)Google Scholar
  8. 8.
    Xui, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  9. 9.
    Bradley, P.S., Mangasarian, O.L., Street, W.N.: Clustering via concave minimization. In: Proc. of NIPS 1996, vol. 9, pp. 368–374 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthieu Puigt
    • 1
  • Yannick Deville
    • 1
  1. 1.Laboratoire d’Astrophysique de Toulouse-TarbesUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations