Advertisement

Blind Extraction of Chaotic Sources from White Gaussian Noise Based on a Measure of Determinism

  • Diogo C. Soriano
  • Ricardo Suyama
  • Romis Attux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5441)

Abstract

This work presents a new method to perform blind extraction of chaotic signals mixed with stochastic sources. The technique makes use of the features underlying the generation of chaotic sources to recover a signal that is “as deterministic as possible”. The method is applied to invertible and underdertemined mixture models and illustrates the potential of incorporating such a priori information about the nature of the sources in the process of blind extraction.

Keywords

Blind source extraction blind source separation chaotic signals recurrence maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abarbanel, D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence Plots of Dynamical Systems. Europhysics Letters 4, 973–977 (1987)CrossRefGoogle Scholar
  4. 4.
    Landa, P.S., Rosenblum, M.G.: Time Series Analysis for System Identification and Diagnostics. Physica D 48, 232–254 (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Badii, R., Broggi, G., Derighetti, B., Ravani, M., Rubio, M.A.: Dimension Increase in Filtered Chaotic Signals. Physical Review Letters 11, 979–982 (1988)CrossRefGoogle Scholar
  6. 6.
    Kostelich, E.J., Schreiber, T.: Noise reduction in chaotic time-series data: a survey of common methods. Physical Review E 48(3), 1752–1763 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Physics Reports 438, 237–329 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New-York (2001)CrossRefGoogle Scholar
  9. 9.
    Haykin, S.: Adaptive Filter Theory. Prentice Hall, New Jersey (2002)zbMATHGoogle Scholar
  10. 10.
    Darbellay, G.A., Vajda, I.: Estimation of the Information by Adaptive Partitioning of the Observation Space. IEEE Transactions on Information Theory 45, 1315–1321 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rohde, G.K., Nichols, J.M., Dissinger, B.M., Bucholtz, F.: Stochastic analysis of recurrence plots with applications to the detection of deterministic signals. Physica D 237, 619–629 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Diogo C. Soriano
    • 1
    • 3
  • Ricardo Suyama
    • 2
    • 3
  • Romis Attux
    • 1
    • 3
  1. 1.Dept. of Computer Engineering and Industrial Automation School of Electrical and Computer Engineering (FEEC)University of Campinas, (Unicamp)CampinasBrazil
  2. 2.Dept. of Microwave and Optics School of Electrical and Computer Engineering (FEEC)University of Campinas, (Unicamp)CampinasBrazil
  3. 3.Lab. of Signal Processing for Communications (DSPCom) School of Electrical and Computer Engineering (FEEC)University of Campinas, (Unicamp)CampinasBrazil

Personalised recommendations