Minimum Determinant Constraint for Non-negative Matrix Factorization

  • Reinhard Schachtner
  • Gerhard Pöppel
  • Ana Maria Tomé
  • Elmar W. Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5441)

Abstract

We propose a determinant criterion to constrain the solutions of non-negative matrix factorization problems and achieve unique and optimal solutions in a general setting, provided an exact solution exists. We demonstrate with illustrative examples how optimal solutions are obtained using our new algorithm detNMF and discuss the difference to NMF algorithms imposing sparsity constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)CrossRefGoogle Scholar
  2. 2.
    Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  3. 3.
    Lee, D., Seung, H.: Algorithms for Non-negative Matrix Factorization. In: NIPS, pp. 556–562 (2000)Google Scholar
  4. 4.
    Hoyer, P.: Non-Negative Sparse Coding. In: Proc. IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, pp. 557–565 (2002)Google Scholar
  5. 5.
    Hoyer, P.: Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 5 (2004)Google Scholar
  6. 6.
    Cichocki, A., Zdunek, R., Amari, S.-i.: Csiszár’s divergences for non-negative matrix factorization: Family of new algorithms. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 32–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Stadlthanner, K., Theis, F.J., Puntonet, C.G., Górriz, J.-M., Tomé, A.M., Lang, E.W.: Hybridizing sparse component analysis with genetic algorithms for blind source separation. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS (LNBI), vol. 3745, pp. 137–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Cichocki, A., Zdunek, R., Amari, S.: Nonnegative Matrix and Tensor Factorization. IEEE Signal Processing Magazine, 142–145 (January 2008)Google Scholar
  9. 9.
    Laurberg, H., Christensen, M.G., Plumbley, M.D., Hansen, L.K., Jensen, S.H.: Theorems on Positive Data: On the Uniqueness of NMF. Computational Intelligence and Neuroscience 2008, article ID 764206, doi:10.1155/2008/764206Google Scholar
  10. 10.
    Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Proc. NIPS 2003. MIT Press, Cambridge (2004)Google Scholar
  11. 11.
    Theis, F.J., Stadlthanner, K., Tanaka, T.: First results on uniqueness of sparse non-negative matrix factorization. In: Proc. EUSIPCO, Eurasip (2005)Google Scholar
  12. 12.
    Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis 52(1), 155–173 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, S., et al.: Learning Spatially Localized, Parts-Based Representation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2001)Google Scholar
  14. 14.
    Hopke, P.K.: A guide to positive matrix factorization. Clarkson University (2000), http://www.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdf
  15. 15.
    Dhillon, I., Sra, S.: Generalized Nonnegative Matrix Approximations with Bregman Divergences. In: Proc. Neural Information Processing Systems, USA (2005)Google Scholar
  16. 16.
    Sajda, P., et al.: Recovery of constituent spectra in 3D chemical shift imaging using non-negative matrix fatorization. In: 4th International Symposium on Independent Component Analysis and Blind Signal Separation, pp. 71–76 (2003)Google Scholar
  17. 17.
    Juvela, M., Lehtinen, K., Paatero, P.: The use of Positive Matrix Factorization in the analysis of molecular line spectra. Mon. Not. R. Astron. Soc. 280, 616–626 (1996)Google Scholar
  18. 18.
    Miao, L., Qi, H.: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 45(3), 765–777 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Reinhard Schachtner
    • 1
    • 2
  • Gerhard Pöppel
    • 2
  • Ana Maria Tomé
    • 3
  • Elmar W. Lang
    • 1
  1. 1.CIMLG / BiophysicsUniversity of RegensburgRegensburgGermany
  2. 2.Infineon Technologies AGRegensburgGermany
  3. 3.DETI / IEETAUniversidade de AveiroAveiroPortugal

Personalised recommendations