Stationary Subspace Analysis

  • Paul von Bünau
  • Frank C. Meinecke
  • Klaus-Robert Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5441)

Abstract

Non-stationarities are an ubiquitous phenomenon in time-series data, yet they pose a challenge to standard methodology: classification models and ICA components, for example, cannot be estimated reliably under distribution changes because the classic assumption of a stationary data generating process is violated. Conversely, understanding the nature of observed non-stationary behaviour often lies at the heart of a scientific question. To this end, we propose a novel unsupervised technique: Stationary Subspace Analysis (SSA). SSA decomposes a multi-variate time-series into a stationary and a non-stationary subspace. This factorization is a universal tool for furthering the understanding of non-stationary data. Moreover, we can robustify other methods by restricting them to the stationary subspace. We demonstrate the performance of our novel concept in simulations and present a real world application from Brain Computer Interfacing.

Keywords

Non-Stationarities Source Separation BSS Dimensionality Reduction Covariate Shift Brain-Computer-Interface BCI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blankertz, B., Kawanabe, M., Tomioka, R., Hohlefeld, F., Nikulin, V., Müller, K.-R.: Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 113–120. MIT Press, Cambridge (2008)Google Scholar
  2. 2.
    Engle, R.F., Granger, C.W.J.: Co-integration and error correction: Representation, estimation, and testing. Econometrica 55(2), 251–276 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Friedman, J., Rafsky, L.: Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. The Annals of Statistics 7(4), 697–717 (1979)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Heckman, J.J.: Sample selection bias as a specification error. Econometrica 47(1), 153–162 (1979)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Jaynes, E.T.: Information theory and statistical mechanics. Physical Review 160, 620–630 (1957)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Murata, N., Kawanabe, M., Ziehe, A., Müller, K.-R., Amari, S.: On-line learning in changing environments with applications in supervised and unsupervised learning. Neural Networks 15(4-6), 743–760 (2002)CrossRefGoogle Scholar
  8. 8.
    Plumbley, M.D.: Geometrical methods for non-negative ica: Manifolds, lie groups and toral subalgebras. Neurocomputing 67, 161–197 (2005)CrossRefGoogle Scholar
  9. 9.
    Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N. (eds.): Dataset Shift in Machine Learning. MIT Press, Cambridge (2008)Google Scholar
  10. 10.
    Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference 90(2), 227–244 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paul von Bünau
    • 1
  • Frank C. Meinecke
    • 1
  • Klaus-Robert Müller
    • 1
  1. 1.Machine Learning Group, CS Dept.TU BerlinGermany

Personalised recommendations