Advertisement

Automated Visual Attention Manipulation

  • Tibor Bosse
  • Rianne van Lambalgen
  • Peter-Paul van Maanen
  • Jan Treur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5395)

Abstract

In this paper a system for visual attention manipulation is introduced and formally described. This system is part of the design of a software agent that supports naval crew in her task to compile a tactical picture of the situation in the field. A case study is described in which the system is used to manipulate a human subject’s attention. To this end the system includes a Theory of Mind about human attention and uses this to estimate the subject’s current attention, and to determine how features of displayed objects have to be adjusted to make the attention shift in a desired direction. Manipulation of attention is done by adjusting illumination according to the calculated difference between a model describing the subject’s attention and a model prescribing it.

Keywords

Visual Attention Attentional State Software Agent Dynamical System Model Reasoning Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baron-Cohen, S.: Mindblindness: an essay on autism and theory of mind. MIT Press, Cambridge (1995)Google Scholar
  2. 2.
    Bosse, T., Both, F., Gerritsen, C., Hoogendoorn, M., Treur, J.: Model-Based Reasoning Methods within an Ambient Intelligent Agent Model. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007 Workshops. CCIS 11, pp. 352–370. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Bosse, T., Hoogendoorn, M., Klein, M., Treur, J.: Agent-Based Generic Model for Human-Like Ambience. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007 Workshops. CCIS 11, pp. 93–103. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: A Language and Environment for Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools 16(3), 435–464 (2007)CrossRefGoogle Scholar
  5. 5.
    Bosse, T., van Maanen, P.-P., Treur, J.: A Cognitive Model for Visual Attention and its Application. In: Nishida, T. (ed.) Proceedings of the 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2006), pp. 255–262. IEEE Computer Society Press, Hong Kong (2006)CrossRefGoogle Scholar
  6. 6.
    Bosse, T., van Maanen, P.-P., Treur, J.: Simulation and formal analysis of visual attention in cognitive systems. In: Paletta, L., Rome, E. (eds.) WAPCV 2007. LNCS (LNAI), vol. 4840, pp. 463–480. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bosse, T., Memon, Z.A., Treur, J.: A Two-Level BDI-Agent Model for Theory of Mind and its Use in Social Manipulation. In: Proceedings of the AISB 2007 Workshop on Mindful Environments, pp. 335–342 (2007)Google Scholar
  8. 8.
    Chen, L.Q., Xie, X., Fan, X., Ma, W.Y., Zhang, H.J., Zhou, H.Q.: A visual attention model for adapting images on small displays. ACM Multimedia Systems Journal (2003)Google Scholar
  9. 9.
    Gärdenfors, P.: Slicing the Theory of Mind. In: Danish yearbook for philosophy, vol. 36, pp. 7–34. Museum Tusculanum Press (2001)Google Scholar
  10. 10.
    Gärdenfors, P.: How Homo Became Sapiens: On the Evolution of Thinking. Oxford University Press, Oxford (2003)Google Scholar
  11. 11.
    Heuvelink, A., Both, F.: Boa: A cognitive tactical picture compilation agent. In: Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2007). IEEE Computer Society Press, Los Alamitos (2007) (forthcoming)Google Scholar
  12. 12.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefPubMedGoogle Scholar
  13. 13.
    Itti, L., Koch, C.: Computational Modeling of Visual Attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)CrossRefPubMedGoogle Scholar
  14. 14.
    Itti, L., Koch, U., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)CrossRefGoogle Scholar
  15. 15.
    Levitt, J.B., Lund, J.S.: Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997)CrossRefPubMedGoogle Scholar
  16. 16.
    Marsella, S.C., Pynadath, D.V., Read, S.J.: PsychSim: Agent-based modeling of social interaction and influence. In: Lovett, M., Schunn, C.D., Lebiere, C., Munro, P. (eds.) Proc. of the Int. Conference on Cognitive Modeling, ICCM 2004, pp. 243–248 (2004)Google Scholar
  17. 17.
    Nothdurft, H.: Salience from feature contrast: additivity across dimensions. Vision Research 40, 1183–1201 (2000)CrossRefPubMedGoogle Scholar
  18. 18.
    Parkurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vision Research 42, 107–123 (2002)CrossRefGoogle Scholar
  19. 19.
    Posner, M.E.: Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980)CrossRefPubMedGoogle Scholar
  20. 20.
    Theeuwes, J.: Endogenous and exogenous control of visual selection. Perception 23, 429–440 (1994)CrossRefPubMedGoogle Scholar
  21. 21.
    Theeuwes, J.: Abrupt luminance change pops out; abrupt color change does not. Perception & Psychophysics 57(5), 637–644 (1995)CrossRefGoogle Scholar
  22. 22.
    Treisman, A.: Features and objects: The fourteenth Bartlett memorial lecture. Q. J. Experimental Psychology A 40, 201–237Google Scholar
  23. 23.
    Turrato, M., Galfano, G.: Color, form and luminance caputer attention in visual search. Vision Research 40, 1639–1643 (2000)CrossRefGoogle Scholar
  24. 24.
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Rianne van Lambalgen
    • 1
  • Peter-Paul van Maanen
    • 1
    • 2
  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.TNO Human FactorsSoesterbergThe Netherlands

Personalised recommendations