Model Based Analysis of fMRI-Data: Applying the sSoTS Framework to the Neural Basic of Preview Search

  • Eirini Mavritsaki
  • Harriet Allen
  • Glyn Humphreys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5395)


The current work aims to unveil the neural circuits underlying visual search over time and space by using a model-based analysis of behavioural and fMRI data. It has been suggested by Watson and Humphreys [31] that the prioritization of new stimuli presented in our visual field can be helped by the active ignoring of old items, a process they termed visual marking. Studies using fMRI link the marking process with activation in superior parietal areas and the precuneus [4,18,27,26]. Marking has been simulated previously using a neural-level account of search, the spiking Search over Time and Space (sSoTS) model, which incorporates inhibitory as well as excitatory mechanisms to guide visual selection. Here we used sSoTS to help decompose the fMRI signals found in a preview search procedure, when participants search for a new target whilst ignoring old distractors. The time course of activity linked to inhibitory and excitatory processes in the model was used as a regressor for the fMRI data. The results showed that different neural networks were correlated with top-down excitation and top-down inhibition in the model, enabling us to fractionate brain regions previously linked to visual marking. We discuss the contribution of model-based analysis for decomposing fMRI data.


NMDA Convolution Dition Deconvolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, A.: Corticonics. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  2. 2.
    Agter, A., Donk, M.: Prioritized selection in visual search through onset capture and color inhibition: Evidence from a probe-dot detection task. Journal of Experimental Psychology: Human Perception and Performance 31, 722–730 (2005)PubMedGoogle Scholar
  3. 3.
    Allen, H.A., Humphreys, G.W.: Previewing distracters reduces their effective contrast. Vision Research 47, 2992–3000 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    Allen, H.A., Humphreys, G.W., Matthews, P.M.: A neural marker of content-specific active ignoring. JEP: HPP 34, 286–297 (2008)Google Scholar
  5. 5.
    Braithwaite, J.J., Humphreys, G.W.: Inhibition and anticipation in visual search: Evidence from effects of color foreknowledge on preview search. Perception and Psychophysics 65, 312–337 (2003)CrossRefGoogle Scholar
  6. 6.
    Brunel, N., Wang, X.: Effects of neuromodulation in a cortical networks model of object working memory dominated by current inhibition. Journal of Computational Neuroscience 63-85, 63–85 (2001)CrossRefGoogle Scholar
  7. 7.
    Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P., Shulman, G.L.: Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience 3, 292–297 (2002)CrossRefGoogle Scholar
  8. 8.
    Coull, J.T.: Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology textb 55, 343–361 (1998)CrossRefGoogle Scholar
  9. 9.
    Deco, G., Zihl, J.: Top-down selective visual attention: A neurodynamical approach. Visual Cognition 8(1), 119–140 (2001)CrossRefGoogle Scholar
  10. 10.
    Deco, G., Rolls, E., Horwitz, B.: Integrating fMRI and single-cell data if visual working memory. Neurocomputing 58-60, 729–737 (2004)CrossRefGoogle Scholar
  11. 11.
    Deco, G., Rolls, E.: Neurodynamics of biased competition and cooperation for attention: a model with spiking neuron. Journal of Neurophysiology 94, 295–313 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    Friston, K.J., Jezzard, P., Turner, R.: Analysis of functional MRI time-series. Human Brain Mapping 1, 153–171 (1994)CrossRefGoogle Scholar
  13. 13.
    Gorchs, S., Deco, G.: Feature-based attention in human visual cortex: simulation of fMRI data. NeuroImage 21, 36–45 (2004)CrossRefGoogle Scholar
  14. 14.
    Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9, 419–429 (1999)Google Scholar
  15. 15.
    Heinke, D., Humphreys, G.W.: Selective attention for identification model (SAIM): Simulating visual neglect. Computer vision and image understanding 100, 172–197 (2005)CrossRefGoogle Scholar
  16. 16.
    Humphreys, G.W., Duncan, J., Treisman, A.: Pre-frontal cortex and the neural basis of executive function. In: Miller, E.K. (ed.) Attention space and Action: Studies in cognitive neuroscience. Oxford University Press, Oxford (1998)Google Scholar
  17. 17.
    Humphreys, G.W., Jolicoeur, P., Watson, D.: Fractionating the preview benefit in search: Dual-task decomposition of visual marking by timing and modality. Journal of Experimental Psychology: Human Performance and Perception 28(3), 640–660 (2002)Google Scholar
  18. 18.
    Humphreys, G.W., Kyllinsbaek, S., Watson, D.G., Olivers, C.N.L., Law, I., Paulson, O.: Parieto-occipital areas involved in efficient filtering in search: A time course analysis of visula marking using behavioural and functional imaging procedures. Quarterly Journal of Experimental Psychology 57A, 610–635 (2004)CrossRefGoogle Scholar
  19. 19.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefPubMedGoogle Scholar
  20. 20.
    Kanswisher, N., Wocjiulik, E.: Visual attention: insights from brain imaging. Nature Reviews Neuroscience 1, 91–100 (2000)CrossRefGoogle Scholar
  21. 21.
    Madison, D., Nicoll, R.: Control of the repetitive discharge of rate ca1 pyramidal neurons in vitro. Journal of Physiology 345, 319–331 (1984)CrossRefGoogle Scholar
  22. 22.
    Mavritsaki, E., Heinke, D., Humphreys, G.W., Deco, G.: Suppressive effects in visual search: A neurocomputational analysis of preview search. Neurocomputing 70, 1925–1931 (2007)CrossRefGoogle Scholar
  23. 23.
    Mavritsaki, E., Heinke, D., Humphreys, G.W., Deco, G.: A computational model of visual marking using an interconnected network of spiking neurons: The spiking Search over Time and Space model (sSoTS). Journal of Physiology Paris 100, 110–124 (2006)CrossRefGoogle Scholar
  24. 24.
    Mozer, M.C., Sitton, M.: Computational modelling of spatial attention. In: Pashler (ed.) Attention, pp. 341–388Google Scholar
  25. 25.
    Olivers, C.N.L., Humphreys, G.W.: Spatiotemporal segregation in visual search: Evidence from parietal lesions. Journal of Experimental Psychology 30(4), 667–688 (2004)PubMedGoogle Scholar
  26. 26.
    Olivers, C.N.L., Smith, S., Matthews, P.M., Humphreys, G.W.: Prioritizing new over old: An fMRI study of the preview search task. Human Brain Mapping 24, 69–78 (2005)CrossRefPubMedGoogle Scholar
  27. 27.
    Pollman, S., Weidner, R., Humphreys, G.W., Olivers, C.N.L., Muller, K., Lohmann, G.: Separating segmentation and target detection in posterior parietal cortex-an event-related fMRI study of visual marking. NeuroImage 18, 310–323 (2003)CrossRefGoogle Scholar
  28. 28.
    Rolls, E., Deco, G.: Computational neuroscience of vision. Oxford University Press, Oxford (2002)Google Scholar
  29. 29.
    Rolls, E., Treves, A.: Neural networks and brain function. Oxford University Press, Oxford (1998)Google Scholar
  30. 30.
    Tuckwell, H.: Introduction to theoretical neurobiology. Cambridge University Press, Cambridge (1998)Google Scholar
  31. 31.
    Watson, D., Humphreys, G.W.: Visual marking: Prioritizing selection fir new objects by top-down attentional inhibition of old objects. Psychological Review 104, 90–122 (1997)CrossRefPubMedGoogle Scholar
  32. 32.
    Watson, D., Humphreys, G.W., Olivers, C.N.L.: Visual marking: using time in visual selection. Trends in Cognitive Sciences 7(4), 180–186 (2003)CrossRefPubMedGoogle Scholar
  33. 33.
    Wilson, F., O’Scalaidhe, S., Goldman-Rakic, P.: Funcional synergism between putative gamma-aminobutyrate-containing neurons in pyramidal neurons in prefrontal cortex. Proceedings of the National Academy of Science 91, 4009–4013 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eirini Mavritsaki
    • 1
  • Harriet Allen
    • 1
  • Glyn Humphreys
    • 1
  1. 1.Behavioural Brain Sciences Centre, School of PsychologyUniversity of BirminghamEdgbastonUK

Personalised recommendations