Multigranular Manipulations for OLAP Querying

  • Gilles Hubert
  • Olivier Teste
Part of the Studies in Computational Intelligence book series (SCI, volume 292)


Decisional systems are based on multidimensional databases improving OLAP analyses. This chapter describes a new OLAP operator named “BLEND” that performs multigranular analyses. This operation transforms multidimensional structures when querying in order to analyze measures according to several granularity levels like one parameter. We study valid uses of this operation in the context of strict hierarchies. Experiments within a R-OLAP implementation show the light cost of the operator.


Decision Support Systems Multidimensional Databases OLAP Querying Multigranular Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model extending UML. Inf. Syst. 31(6), 541–567 (2006), CrossRefGoogle Scholar
  2. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional Databases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 153–164. Springer, Heidelberg (1999)Google Scholar
  3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Rec. 26(1), 65–74 (1997), CrossRefGoogle Scholar
  4. Eder, J., Koncilia, C., Mitsche, D.: Automatic Detection of Structural Changes in Data Warehouses. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 119–128. Springer, Heidelberg (2003)Google Scholar
  5. Espil, M.M., Vaisman, A.A.: Efficient intensional redefinition of aggregation hierarchies in multidimensional databases. In: DOLAP 2001: Proceedings of the 4th ACM international workshop on Data warehousing and OLAP, pp. 1–8. ACM, New York (2001), CrossRefGoogle Scholar
  6. Favre, C., Bentayeb, F., Boussad, O.: Dimension Hierarchy Updates in Data Warehouses: a User-driven Approach. In: 9th International Conference on Enterprise Information Systems (ICEIS 2007), Funchal, Madeira, Portugal, pp. 206–211 (2007) Google Scholar
  7. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual Design of Data Warehouses from E/R Schema. In: HICSS 1998: Proceedings of the Thirty-First Annual Hawaii International Conference on System Sciences, vol. 7, pp. 334–343. IEEE Computer Society, Washington (1998), CrossRefGoogle Scholar
  8. Golfarelli, M., Rizzi, S., Saltarelli, E.: WAND: A CASE Tool for Workload-Based Design of a Data Mart. In: SEBD, pp. 422–426 (2002)Google Scholar
  9. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE 1996: Proceedings of the Twelfth International Conference on Data Engineering, pp. 152–159. IEEE Computer Society, Washington (1996)CrossRefGoogle Scholar
  10. Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multi-dimensional Databases. In: VLDB 1997: Proceedings of the 23rd International Conference on Very Large Data Bases, pp. 106–115. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  11. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data Cubes under Dimension Updates. In: International Conference on Data Engineering, vol. 0, pp. 346–355 (1999),
  12. Kimball, R.: The data warehouse toolkit: practical techniques for building dimensional data warehouses. John Wiley & Sons, Inc., New York (1996)Google Scholar
  13. Kotidis, Y., Roussopoulos, N.: DynaMat: a dynamic view management system for data warehouses. In: SIGMOD 1999: Proceedings of the 1999 ACM SIGMOD international conference on Management of data, pp. 371–382. ACM, New York (1999), CrossRefGoogle Scholar
  14. Lenz, H.-J., Thalheim, B.: OLAP Databases and Aggregation Functions. In: SSDBM 2001: Proceedings of the 13th International Conference on Scientific and Statistical Database Management, pp. 91–100. IEEE Computer Society, Washington (2001)CrossRefGoogle Scholar
  15. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from conceptual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006), CrossRefGoogle Scholar
  16. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Graphical Querying of Multidimensional Databases. In: Ioannidis, Y.E., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 298–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and Graphic Languages for OLAP Manipulations. IJDWM 4(1), 17–46 (2008)Google Scholar
  18. Romero, O., Abelló, A.: On the Need of a Reference Algebra for OLAP. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD Record 28(4), 64–69 (1999), CrossRefGoogle Scholar
  20. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activities as graphs. In: Lakshmanan, L.V.S. (ed.) DMDW. CEUR Workshop Proceedings, vol. 58, pp. 52–61 (2002) CEUR-WS.orgGoogle Scholar
  21. Zhuge, Y., Garcia-Molina, H., Wiener, J.L.: Consistency Algorithms for Multi-Source Warehouse View Maintenance. Distrib. Parallel Databases 6(1), 7–40 (1998), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gilles Hubert
    • 1
  • Olivier Teste
    • 1
  1. 1.Université de Toulouse, IRIT (UMR 5505), équipe SIGToulouse cedex 9France

Personalised recommendations