Loading Analysis of a Remotely Interrogatable Passive Microvalve

  • Ajay C. Tikka
  • Said F. Al-Sarawi
  • Derek Abbott
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 49)


We present the dynamic loading analysis of a normally closed, remotely actuated, secure coded, electrostatically driven, active microvalve using passive components. The design employs a synergetic approach to incorporates the advantages of both electroacoustic correlation and electrostatic actuation into the microvalve structure. This is carried out by utilising the complex signal processing capabilities of two identical, 5×2-bit Barker sequence encoded, acoustic wave correlators. An electrostatically driven microchannel, comprising of two conducting diaphragms as the top and bottom walls, is placed in between the compressor IDT’s of the two correlators. Secure interrogability of the microvalve is demonstrated by the 3-D finite element modelling of the complete structure and the quantitative deduction of the harmonic code dependent microchannel actuation. Furthermore, the dynamic transient analysis is employed to investigation the nonlinear time response of the microvalve and other performance criteria of the structure such as microchannel opening dynamics and the microvalve loading time.


Surface Acoustic Wave Check Valve Ultrasonic Motor Acoustic Streaming Electrostatic Actuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oh, K.W., Ahn, C.H.: A review of microvalves. Journal of Micromechanics and Microengineering 16, 13–39 (2006)CrossRefGoogle Scholar
  2. 2.
    Nguyen, N., Huang, X., Chuan, T.K.: MEMS-Micropumps: A Review. Journal of Fluids Engineering 124(4), 384–392 (2002)CrossRefGoogle Scholar
  3. 3.
    Cao, L., Mantell, S., Polla, D.: Implantable medical drug delivery systems using microelectromechanical systems technology. In: Proc. of 1st International Conference on Microtechnologies in Medicine and Biology, October 2000, pp. 487–490 (2000)Google Scholar
  4. 4.
    Geipel, A., Doll, A., Goldschmidtböing, F., Müller, B., Jantscheff, P., Esser, N., Massing, U., Woias, P.: Design of an implantable active microport system for patient specific drug release. In: BioMed 2006: Proceedings of the 24th IASTED International Conference on Biomedical Engineering, February 2006, pp. 161–166 (2006)Google Scholar
  5. 5.
    Demirci, U.: Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. Journal of Microelectromechanical Systems 15(4), 957–966 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Wixforth, A.: Acoustically driven planar microfluidics. Superlattices and Microstructures 33(5) (2004)Google Scholar
  7. 7.
    Tikka, A.C., Al-Sarawi, S., Abbott, D.: A Remotely Interrogatable Passive Microactuator using SAW Correlation. In: Proc. of 3rd International Conference on Sensing Technology, November 2008, pp. 46–51 (2008), ISBN: 978-1-4244-2176-3Google Scholar
  8. 8.
    Thiele, J.A., da Cunha, M.P.: High temperature saw gas sensor on langasite. In: Proc. of IEEE Sensors, October 2003, vol. 2, pp. 769–772 (2003)Google Scholar
  9. 9.
    Bastermeijer, J., Jakoby, B., Bossche, A., Vellekoop, M.J.: A novel readout system for microacoustic viscosity sensors. In: Proc. of 2002 IEEE Ultrasonics Symposium, October 2002, vol. 1, pp. 489–492 (2002)Google Scholar
  10. 10.
    Li, Y., Yang, M., Ling, M., Zhu, Y.: Surface acoustic wave humidity sensors based on poly(p-diethynylbenzene) and sodium polysulfonesulfonate. Sensors and Actuators. B 122(2), 560–563 (2007)CrossRefGoogle Scholar
  11. 11.
    Luo, C.-P.: Detection of antibody-antigen reactions using surface acoustic wave and electrochemical immunosensors. PhD thesis, Ruperto-Carola University of Heidelberg (2004)Google Scholar
  12. 12.
    Sakong, J., Roh, Y., Roh, H.: 3f-2 saw sensor system with micro-fluidic channels to detect DNA molecules. In: Proc. of IEEE Ultrasonics Symposium, October 2006, pp. 548–551 (2006)Google Scholar
  13. 13.
    Mitsakakis, K., Tserepi, A., Gizeli, E.: Saw device integrated with microfluidics for array-type biosensing. Microelectronic Engineering 86(4) (2009)Google Scholar
  14. 14.
    Strobl, C.J., von Guttenberg, Z., Wixforth, A.: Nano- and pico-dispensing of fluids on planar substrates using saw. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 51(11), 1432–1436 (2004)CrossRefGoogle Scholar
  15. 15.
    Nguyen, N.-T., White, R.M.: Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 47(6), 1463–1471 (2000)CrossRefGoogle Scholar
  16. 16.
    Rife, J.C., Bell, M.I., Horwitz, J.S., Kabler, R.C., Auyeung, R.C.Y., Kim, J.: Miniature valveless ultrasonic pumps and mixers. Sensors and Actuators. A 86(1) (2000)Google Scholar
  17. 17.
    Kondoh, J., Shimizu, N., Matsui, Y., Shiokawa, S.: Liquid heating effects by saw streaming on the piezoelectric substrate. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 52(10), 1881–1883 (2005)CrossRefGoogle Scholar
  18. 18.
    Qi, Q., Brereton, G.J.: Mechanisms of removal of micron-sized particles by high-frequency ultrasonic waves. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 42(4), 619–629 (1995)CrossRefGoogle Scholar
  19. 19.
    Changliang, X., Mengli, W.: Stability analysis of the rotor of ultrasonic motor driving fluid directly. Ultrasonics 43(7), 596–601 (2005)CrossRefGoogle Scholar
  20. 20.
    Frampton, K.D., Minor, K., Martin, S.: Acoustic streaming in micro-scale cylindrical channels. Applied Acoustics 65(11), 1121–1129 (2004)CrossRefGoogle Scholar
  21. 21.
    Yu, H., Kwon, J.W., Kim, E.S.: Microfluidic mixer and transporter based on pzt self-focusing acoustic transducers. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 15(4), 1015–1024 (2006)Google Scholar
  22. 22.
    Batra, R.C., Porfiri, M., Spinello, D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Materials and Structures 16(6), R23–R31 (2007)CrossRefGoogle Scholar
  23. 23.
    Sounart, T.L., Michalske, T.A., Zavadil, K.R.: Frequency-dependent electrostatic actuation in microfluidic mems. Journal of Microelectromechanical Systems 14(1), 125–133 (2005)CrossRefGoogle Scholar
  24. 24.
    Avdeev, I.V.: New formulation for finite element modeling electrostatically driven microelectromechanical systems. PhD thesis, University of Pittsburgh, ch. 3 (2003)Google Scholar
  25. 25.
    Moaveni, S.: Finite Element Analysis: Theory and Applications with ANSYS, 3rd edn. Prentice Hall, Englewood Cliffs (2007)Google Scholar
  26. 26.
    ANSYS Inc. ANSYS 9.0 Training Manual (2008)Google Scholar
  27. 27.
    Lai, Z.C.: Finite element analysis of electrostatic coupled systems using geometrically nonlinear mixed assumed stress finite elements. Master’s thesis, University of Pretoria, ch. 4 (2007)Google Scholar
  28. 28.
    Galambos, P., Czaplewski, D., Givler, R., Pohl, K., Luck, D.L., Benavides, G., Jokiel, B.: Drop ejection utilizing sideways actuation of a mems piston. Sensors and Actuators. A 141(1), 182–191 (2008)CrossRefGoogle Scholar
  29. 29.
    Kaajakari, V., Sathaye, A., Lal, A.: A frequency addressable ultrasonic microfluidic actuator array. In: Proc. of 11th International Conference on Solid State Sensors and Actuators Transducers 2001/Eurosensors XV, June 2001, pp. 958–961 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ajay C. Tikka
    • 1
  • Said F. Al-Sarawi
    • 1
  • Derek Abbott
    • 2
  1. 1.Centre for High Performance Integrated Technologies and Systems (CHiPTec)The University of AdelaideAustralia
  2. 2.Centre for Biomedical EngineeringThe University of AdelaideAustralia

Personalised recommendations