Why We Twitter: An Analysis of a Microblogging Community

  • Akshay Java
  • Xiaodan Song
  • Tim Finin
  • Belle Tseng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5439)


Microblogging is a new form of communication in which users describe their current status in short posts distributed by instant messages, mobile phones, email or the Web. We present our observations of the microblogging phenomena by studying the topological and geographical properties of the social network in Twitter, one of the most popular microblogging systems. We find that people use microblogging primarily to talk about their daily activities and to seek or share information. We present a taxonomy characterizing the the underlying intentions users have in making microblogging posts. By aggregating the apparent intentions of users in implicit communities extracted from the data, we show that users with similar intentions connect with each other.


Social Network Instant Messaging User Intention Twitter User Clique Percolation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Griswold, W.G.: Five enablers for mobile 2.0. Computer 40(10), 96–98 (2007)CrossRefGoogle Scholar
  2. 2.
    Pontin, J.: From many tweets, one loud voice on the internet. The New York Times (April 22, 2007)Google Scholar
  3. 3.
    Comscore: Sites for social butterflies (May 2007),
  4. 4.
  5. 5.
    Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kang, I.H., Kim, G.: Query type classification for web document retrieval. In: SIGIR 2003: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 64–71. ACM Press, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Nardi, B.A., Schiano, D.J., Gumbrecht, M., Swartz, L.: Why we blog. Commun. ACM 47(12), 41–46 (2004)CrossRefGoogle Scholar
  8. 8.
    Lento, T., Welser, H.T., Gu, L., Smith, M.: The ties that blog: Examining the relationship between social ties and continued participation in the wallop weblogging system (2006)Google Scholar
  9. 9.
    Lin, Y.R., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.: Discovery of Blog Communities based on Mutual Awareness. In: Proceedings of the 3rd Annual Workshop on Weblogging Ecosystem: Aggregation, Analysis and Dynamics, 15th World Wide Web Conference (May 2006)Google Scholar
  10. 10.
    Austin, J.: How to Do Things with Words. Oxford University Press, Oxford (1976)Google Scholar
  11. 11.
    Strawson, P.: Intention and Convention in Speech Acts. The Philosophical Review 73(4), 439–460 (1964)CrossRefGoogle Scholar
  12. 12.
    Grice, H.: Utterer’s meaning and intentions. Philosophical Review 78(2), 147–177 (1969)CrossRefGoogle Scholar
  13. 13.
    Grosz, B.J.: Focusing and Description in Natural Language Dialogues. Cambridge University Press, New York (1981)Google Scholar
  14. 14.
    Allen, J.: Recognizing intentions from natural language utterances. In: Computational Models of Discourse, 107–166 (1983)Google Scholar
  15. 15.
    Matsubara, S., Kimura, S., Kawaguchi, N., Yamaguchi, Y., Inagaki, Y.: Example-based Speech Intention Understanding and Its Application to In-Car Spoken Dialogue System. In: Proceedings of the 19th international conference on Computational linguistics, vol. 1, pp. 1–7 (2002)Google Scholar
  16. 16.
    Kolari, P., Finin, T., Yesha, Y., Yesha, Y., Lyons, K., Perelgut, S., Hawkins, J.: On the Structure, Properties and Utility of Internal Corporate Blogs. In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM 2007) (March 2007)Google Scholar
  17. 17.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  19. 19.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for emerging cyber-communities. Computer Networks 31(11-16), 1481–1493 (1999)CrossRefGoogle Scholar
  20. 20.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proceedings of the 9th international World Wide Web conference on Computer networks: the international journal of computer and telecommunications networking, pp. 309–320. North-Holland Publishing Co., Amsterdam (2000)Google Scholar
  21. 21.
    Shi, X., Tseng, B., Adamic, L.A.: Looking at the blogosphere topology through different lenses. In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM 2007) (2007)Google Scholar
  22. 22.
    Blogpulse: The 3rd annual workshop on weblogging ecosystem: Aggregation, analysis and dynamics. In: 15th world wide web conference (May 2006)Google Scholar
  23. 23.
    Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. Proceedings of the National Academy of Sciences 102(33), 11623–11628 (2005)CrossRefGoogle Scholar
  24. 24.
    Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: CIKM 2006: Proceedings of the 15th ACM international conference on Information and knowledge management, pp. 435–444. ACM Press, New York (2006)Google Scholar
  25. 25.
    Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemporary Physics 46, 323 (2005)CrossRefGoogle Scholar
  26. 26.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data (June 2007)Google Scholar
  27. 27.
    Donato, D., Laura, L., Leonardi, S., Millozzi, S.: Large scale properties of the webgraph. European Physical Journal B 38, 239–243 (2004)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization of the web and identification of communities. IEEE Computer 35(3), 66–71 (2002)CrossRefGoogle Scholar
  31. 31.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks (December 2001)Google Scholar
  32. 32.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)CrossRefGoogle Scholar
  33. 33.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005)CrossRefGoogle Scholar
  34. 34.
    Derenyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical Review Letters 94, 160202 (2005)CrossRefGoogle Scholar
  35. 35.
    Granovetter, M.S.: The strength of weak ties. The American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  36. 36.
    Rayson, P., Garside, R.: Comparing corpora using frequency profiling (2000)Google Scholar
  37. 37.
    Lavallee, A.: Friends swap twitters, and frustration - new real-time messaging services overwhelm some users with mundane updates from friends (March 16, 2007)Google Scholar
  38. 38.
    Java, A., Joshi, A., Finin, T.: Approximating the community structure of the long tail. In: The Second International Conference on Weblogs and Social Media (submitted) (November 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Akshay Java
    • 1
  • Xiaodan Song
    • 2
  • Tim Finin
    • 1
  • Belle Tseng
    • 3
  1. 1.University of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.Google Inc.Mountain ViewUSA
  3. 3.Yahoo! Inc.Santa ClaraUSA

Personalised recommendations