A Modular Equational Generalization Algorithm

  • María Alpuente
  • Santiago Escobar
  • José Meseguer
  • Pedro Ojeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5438)

Abstract

This paper presents a modular equational generalization algorithm, where function symbols can have any combination of associativity, commutativity, and identity axioms (including the empty set). This is suitable for dealing with functions that obey algebraic laws, and are typically mechanized by means of equational atributes in rule-based languages such as ASF+SDF, Elan, OBJ, Cafe-OBJ, and Maude. The algorithm computes a complete set of least general generalizations modulo the given equational axioms, and is specified by a set of inference rules that we prove correct. This work provides a missing connection between least general generalization and computing modulo equational theories, and opens up new applications of generalization to rule-based languages, theorem provers and program manipulation tools such as partial evaluators, test case generators, and machine learning techniques, where function symbols obey algebraic axioms. A Web tool which implements the algorithm has been developed which is publicly available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aït-Kaci, H., Sasaki, Y.: An Axiomatic Approach to Feature Term Generalization. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, pp. 1–12. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Alpuente, M., Escobar, S., Meseguer, J., Ojeda, P.: A modular Equational Generalization Algorithm. Technical Report DSIC-II/6/08, DSIC-UPV (2008)Google Scholar
  3. 3.
    Alpuente, M., Escobar, S., Meseguer, J., Ojeda, P.: Order–Sorted Generalization. Electr. Notes Theor. Comput. Sci. (to appear) (2008)Google Scholar
  4. 4.
    Alpuente, M., Falaschi, M., Vidal, G.: Partial evaluation of functional logic programs. ACM Trans. Program. Lang. Syst. 20(4), 768–844 (1998)CrossRefGoogle Scholar
  5. 5.
    Alpuente, M., Lucas, S., Hanus, M., Vidal, G.: Specialization of functional logic programs based on needed narrowing. TPLP 5(3), 273–303 (2005)MathSciNetMATHGoogle Scholar
  6. 6.
    Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning. Elsevier, Amsterdam (1999)Google Scholar
  7. 7.
    Belli, F., Jack, O.: Declarative paradigm of test coverage. Softw. Test., Verif. Reliab. 8(1), 15–47 (1998)CrossRefGoogle Scholar
  8. 8.
    Bergstra, J.A., Heering, J., Klint, P.: Algebraic Specification. ACM Press, New York (1989)MATHGoogle Scholar
  9. 9.
    Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E.: ELAN from a rewriting logic point of view. Theoretical Computer Science 285, 155–185 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Boyer, R., Moore, J.: A Computational Logic. Academic Press, London (1980)MATHGoogle Scholar
  11. 11.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. Springer, New York (2007)MATHGoogle Scholar
  12. 12.
    Clavel, M., Palomino, M.: The ITP tool’s manual. Universidad Complutense, Madrid (April 2005), http://maude.sip.ucm.es/itp/
  13. 13.
    Cortier, V., Delaune, S., Lafourcade, P.: A Survey of Algebraic Properties used in Cryptographic Protocols. Journal of Computer Security 14(1), 1–43 (2006)CrossRefGoogle Scholar
  14. 14.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report. AMAST Series in Computing, vol. 6. World Scientific, Singapore (1998)MATHGoogle Scholar
  15. 15.
    Escobar, S., Meseguer, J., Thati, P.: Narrowing and rewriting logic: from foundations to applications. Electr. Notes Theor. Comput. Sci. 177, 5–33 (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL Protocol Analyzer and its meta-logical properties. Theoretical Computer Science 367(1-2), 162–202 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proc. PEPM 1993, pp. 88–98. ACM, New York (1993)Google Scholar
  18. 18.
    Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing OBJ. In: Software Engineering with OBJ: Algebraic Specification in Action, pp. 3–167. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  19. 19.
    Huet, G.: Resolution d’Equations dans des Langages d’Order 1, 2,...,ω. PhD thesis, Univ. Paris VII (1976)Google Scholar
  20. 20.
    Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Dordrecht (2000)Google Scholar
  21. 21.
    Lassez, J.-L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann, Los Altos (1988)CrossRefGoogle Scholar
  22. 22.
    Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Mogensen, T.Æ.: Glossary for partial evaluation and related topics. Higher-Order and Symbolic Computation 13(4) (2000)Google Scholar
  25. 25.
    Muggleton, S.: Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic. Artif. Intell. 114(1-2), 283–296 (1999)CrossRefMATHGoogle Scholar
  26. 26.
    Østvold, B.: A functional reconstruction of anti-unification. Technical Report DART/04/04, Norwegian Computing Center (2004), http://publications.nr.no/nr-notat-dart-04-04.pdf
  27. 27.
    Pfenning, F.: Unification and anti-unification in the calculus of constructions. In: Proc. LICS 1991, pp. 74–85. IEEE Computer Society, Los Alamitos (1991)Google Scholar
  28. 28.
    Plotkin, G.D.: A note on inductive generalization. In: Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press (1970)Google Scholar
  29. 29.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Popplestone, R.J.: An experiment in automatic induction. In: Machine Intelligence, vol.  5, pp. 203–215. Edinburgh University Press (1969)Google Scholar
  31. 31.
    Reynolds, J.: Transformational systems and the algebraic structure of atomic formulas. Machine Intelligence 5, 135–151 (1970)MathSciNetMATHGoogle Scholar
  32. 32.
    Siekmann, J.H.: Unification Theory. Journal of Symbolic Computation 7, 207–274 (1989)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • María Alpuente
    • 1
  • Santiago Escobar
    • 1
  • José Meseguer
    • 2
  • Pedro Ojeda
    • 1
  1. 1.Universidad Politécnica de ValenciaSpain
  2. 2.University of Illinois at Urbana–ChampaignUSA

Personalised recommendations