Principle of Active Magnetic Suspension

  • René Larsonneur

Magnetic bearings can be basically categorized into two groups depending on the physical cause of the magnetic effect involved. The first group are referred to as reluctance force bearings while the second group is made up by the Lorentz force bearings. Whereas the latter bearing type has lately gained an increasing importance mainly in the field of the self-bearing motor, it is still the case that the bulk of industrial magnetic bearing applications employ reluctance force bearings.


Pulse Width Modulate Magnetic Bearing Dynamic Compliance Active Magnetic Bearing Frequency Response Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO 14839-3. Mechanical vibration - Vibration of rotating machinery equipped with active magnetic bearings - Part 3: Evaluation of stability margin. International Organization for Standardization ISO, 2006.Google Scholar
  2. 2.
    J. Ackermann. Sampled Data Control Systems. Springer-Verlag, Berlin, 1985.zbMATHGoogle Scholar
  3. 3.
    G. J. Balas, J. C. Doyle, K. Glover, A. K. Packard, and R. Smith. μ Analysis and Synthesis Toolbox User’s Guide. The MathWorks, Natick, MA, 1995.Google Scholar
  4. 4.
    H. Bleuler, et al. New concepts for cost effective magnetic bearing control. AUTOMATICA, 30:5, 1994.CrossRefGoogle Scholar
  5. 5.
    S. R. Bowes and M. J. Mount. Microprocessor control of PWM inverters. IEEE Transactions on Industry Applications, 128(6):293–305, 1981.Google Scholar
  6. 6.
    S. Brown and J. Rose. Architecture of FPGAs and CPLDs: A tutorial. IEEE Design and Test of Computers, 13(2):42–57, 1996.CrossRefGoogle Scholar
  7. 7.
    Ph. Bühler. Hochintegrierte Magnetlagersysteme. PhD thesis, No. 11287, Federal Institute of Technology (ETH), Zürich, Switzerland, 1995.Google Scholar
  8. 8.
    J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. MacMillan, New York, 1992.Google Scholar
  9. 9.
    J. C. Doyle and G. Stein. Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, 26(1):4–16, 1981.zbMATHCrossRefGoogle Scholar
  10. 10.
    B. W. Duncan. Pediatric mechanical circulatory support: A new golden era? Artificial Organs (Blackwell Publishing Ltd.), 29(12):925–926, December 2005.MathSciNetGoogle Scholar
  11. 11.
    S. Earnshaw. On the nature of the molecular forces, which regulate the constitution of the luminiferous ether. Transactions of Cambridge Philosophical Society, 7:97–112, 1842.Google Scholar
  12. 12.
    P. Ekas. FPGAs rapidly replacing high-performance DSP capability. DSP Engineering Magazine (, February 2007.Google Scholar
  13. 13.
    H. P. Geering. Mess- und Regelungstechnik. Springer-Verlag, Berlin, second edition, 1990.zbMATHGoogle Scholar
  14. 14.
    J. Holtz. Pulsewidth modulation – a survey. IEEE Transactions of Industrial Electronics, 39(5):410–420, December 1992.CrossRefGoogle Scholar
  15. 15.
    H. Hoshi, T. Shinshi, and S. Takatani. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artificial Organs (Blackwell Publishing Ltd.), 30(5):324–338, May 2006.Google Scholar
  16. 16.
    R. Jastrzebski, R. Pöllännen, O. Pyrhönen, A. Kärkkäinen, and J. Sopanen. Modeling and implementation of active magnetic bearing rotor system for FPGA -based control. In Proceedings of the Tenth International Symposium on Magnetic Bearings, Martigny, Switzerland, August 2006.Google Scholar
  17. 17.
    R. Larsonneur. Design and Control of Active Magnetic Bearing Systems for High Speed Rotation. PhD thesis, No. 9140, Federal Institute of Technology ( ETH ), Zürich, Switzerland, 1990.Google Scholar
  18. 18.
    H. Le-Huy. Microprocessors and digital IC s for motion control. Proceedings of the IEEE , 82(8):1140–1163, 1994.Google Scholar
  19. 19.
    A. Lenk. Elektromechanische Systeme. VEB Technik, Berlin, GDR , third edition, 1971.Google Scholar
  20. 20.
    S. Meshkat and I. Ahmed. Using DSP s in AC induction motor drives. Control Engineering Practice, 35(2):54–56, February 1988.Google Scholar
  21. 21.
    K. Nonami, H. E. Weidong, and H. Nishimura. Robust control of magnetic levitation systems by means of H ∞ control μ- synthesis. JSME International Journal, 37(3):513–520, 1994.Google Scholar
  22. 22.
    J. Salm. Eine aktive magnetische Lagerung eines elastischen Rotors als Beispiel ordnungsreduzierter Regelung grosser alastischer Systeme. PhD thesis, Fortschrittberichte VDI , Reihe 1, Nr. 162, Düsseldorf, Germany, 1988, ISBN 3-18-14-6201-2.Google Scholar
  23. 23.
    G. Schweitzer and R. Lange. Characteristics of a magnetic rotor bearing for active vibration control. In Proceedings of the International Conference on Vibrations in Rotating Machinery, Churchill College, Cambridge, U.K., 1976.Google Scholar
  24. 24.
    H. Stemmler. Inverter circuit for supplying current to polyphase motors. US Patent 3 346 794, 1967.Google Scholar
  25. 25.
    H. Stemmler and A. Schönung. Frequenzumformung. Brown Bovery Mitteilungen, Nr. 8/9, Baden, Switzerland, 1964.Google Scholar
  26. 26.
    J. Thoma. it Simulation by Bondgraphs . Springer-Verlag, Berlin, 1990.Google Scholar
  27. 27.
    D. Vischer. Sensorlose und spannungsgesteuerte Magnetlager. PhD thesis, No. 8665, Federal Institute of Technology ( ETH ), Zürich, Switzerland, 1988.Google Scholar
  28. 28.
    D. Vischer and H. Bleuler. A new approach to sensorless and voltage controlled AMB s based on network theory concepts. In Proceedings of the Second International Symposium on Magnetic Bearings, University of Tokyo, Japan, July 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.MECOS Traxler AG IndustriestrasseSwitzerland

Personalised recommendations