Advertisement

geneSetFinder: A Multiagent Architecture for Gathering Biological Information

  • Daniel Glez-Peña
  • Julia Glez-Dopazo
  • Reyes Pavón
  • Rosalía Laza
  • Florentino Fdez-Riverola
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)

Abstract

The past decade has seen a tremendous growth in the amount of experimental and computational biomedical data, specifically in the areas of genomics and proteomics. In this context, the immense volume of data resulting from DNA microarray experiment presents a major data analysis challenge. Current methods for genome-wide analysis of expression data typically rely on biologically relevant gene sets instead of individual genes. This has translated into a need for sophisticated tools to mine, integrate and prioritize massive amounts of information. In this work we report the development of a multiagent architecture that gives support to the construction of gene sets coming from multiple heterogeneous data sources. The proposed architecture is the base of a publicly available web portal in which final users are able to extract lists of genes from multiple heterogeneous data sources.

Keywords

MAS architecture integrative data sources gene set construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470 (1995)CrossRefGoogle Scholar
  2. 2.
    Nam, D., Kim, S.-Y.: Gene-set approach for expression pattern analysis. Briefings in Bioinformatics 9(3), 189–197 (2008)CrossRefGoogle Scholar
  3. 3.
    Khatri, P., Drăghici, S.: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21(18), 3587–3595 (2005)CrossRefGoogle Scholar
  4. 4.
    Ball, C.A., Sherlock, G., Brazma, A.: Funding high-throughput data sharing. Nature Biotechnology 22(9), 1179–1183 (2004)CrossRefGoogle Scholar
  5. 5.
    Kanehisa, M., Bork, P.: Bioinformatics in the post-sequence era. Nature Genetics 33(Suppl.), 305–310 (2003)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Jennings, N.R.: Agent-Based Computing: Promise and Perils. In: Proc. 16th International Joint Conference on Artificial Intelligence, pp. 1429–1436 (1999)Google Scholar
  8. 8.
    Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  9. 9.
    Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J.: The RETSINA MAS Infrastructure. Robotics Institute Technical Report # CMU-RI-TR-01-05 (2001)Google Scholar
  10. 10.
    Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent societies: a survey. In: Omicini, A. (ed.) Coordination of Internet Agents. Models, Technologies, and Applications, pp. 197–224 (2001)Google Scholar
  11. 11.
    Decker, K., Sycara, K., Williamson, M.: Middle-Agents for the Internet. In: Proc. 15th International Joint Conference on Artificial Intelligence, vol. 1, pp. 578–583 (1997)Google Scholar
  12. 12.
    Huhns, M.N., Singh, M.P.: All agents are not created equal. IEEE Internet Computing 2(3), 94–96 (1998)CrossRefGoogle Scholar
  13. 13.
    Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models. Artiff. Intell. Rev. 24(1), 33–60 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gambetta, D.: Can we trust trust? In: Gambetta, D. (ed.) Trust: Making and Breaking Cooperative Relations, pp. 213–237. University of Oxford, Department of Sociology (2000)Google Scholar
  15. 15.
    Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. International Journal on Human Computer Systems 43, 907–928 (1994)CrossRefGoogle Scholar
  16. 16.
    FIPA organization, http://www.fipa.org/
  17. 17.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(database issue), D480–D484 (2008)CrossRefGoogle Scholar
  18. 18.
    Rebhan, M., Chalifa-Caspi, V., Prilusky, J., Lancet, D.: GeneCards: integrating information about genes, proteins and diseases. Trends in Genetics 13(4), 163 (1997)CrossRefGoogle Scholar
  19. 19.
    Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication language. In: Proc. 3rd International Conference on Information and Knowledge Management, pp. 456–463 (1994)Google Scholar
  20. 20.
    FIPA Interaction Protocol Lib. Specification, http://www.fipa.org/specs/fipa00025/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Glez-Peña
    • 1
  • Julia Glez-Dopazo
    • 1
  • Reyes Pavón
    • 1
  • Rosalía Laza
    • 1
  • Florentino Fdez-Riverola
    • 1
  1. 1.Escuela Superior de Ingeniería InformáticaUniversidad de Vigo, Edificio PolitécnicoOurenseSpain

Personalised recommendations