Noncoding RNAs in the Development, Function and Pathologies of the Central Nervous System

  • Maciej Szymański
  • Jan Barciszewski


Noncoding RNAs (ncRNAs) are now recognized as important components of regulatory networks governing gene expression in all organisms. In mammals ncRNAs have been shown to regulate many key processes associated with the development and maintenance of specific gene expression profiles. In the nervous system many various classes of ncRNAs play a role in neural cells differentiation and activity. Aberrant expression of noncoding transcripts in the cells of the nervous system is often associated with severe disorders involving neurodegenerative diseases, psychiatric conditions and cancer.


Noncoding RNAs Imprint Gene Antisense Transcript Angelman Syndrome Amyloid Precursor Protein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abelson JF, Kwan KY, O'Roak BJ et al (2005) Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310:317–320PubMedCrossRefGoogle Scholar
  2. Allen TA, Von Kaenel S, Goodrich JA et al (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821PubMedCrossRefGoogle Scholar
  3. Ashraf SI, McLoon AL, Sclarsic SM et al (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205PubMedCrossRefGoogle Scholar
  4. Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506PubMedCrossRefGoogle Scholar
  5. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778PubMedCrossRefGoogle Scholar
  6. Beveridge NJ, Tooney PA, Carroll AP et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168PubMedCrossRefGoogle Scholar
  7. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148PubMedCrossRefGoogle Scholar
  8. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966PubMedCrossRefGoogle Scholar
  9. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedCrossRefGoogle Scholar
  10. Carninci P, Hayashizaki Y (2007) Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 17:139–144PubMedCrossRefGoogle Scholar
  11. Cawley S, Bekiranov S, Ng HH et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509PubMedCrossRefGoogle Scholar
  12. Chen K, Rajewsky N (2008) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103CrossRefGoogle Scholar
  13. Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205PubMedCrossRefGoogle Scholar
  14. Chendrimada TP, Finn KJ, Ji X et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828PubMedCrossRefGoogle Scholar
  15. Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154PubMedCrossRefGoogle Scholar
  16. Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedCrossRefGoogle Scholar
  17. Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742PubMedCrossRefGoogle Scholar
  18. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848PubMedCrossRefGoogle Scholar
  19. Corsten MF, Miranda R, Kasmieh R et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000PubMedCrossRefGoogle Scholar
  20. Erwin JA, Lee JT (2008) New twists in X-chromosome inactivation. Curr Opin Cell Biol 20:349–355PubMedCrossRefGoogle Scholar
  21. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  22. Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730PubMedCrossRefGoogle Scholar
  23. Ferretti E, De Smaele E, Po A et al (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577PubMedCrossRefGoogle Scholar
  24. Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3:e2236PubMedCrossRefGoogle Scholar
  25. Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedCrossRefGoogle Scholar
  26. Giraldez AJ, Cinalli RN, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838PubMedCrossRefGoogle Scholar
  27. Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRefGoogle Scholar
  28. Greco SJ, Rameshwar P (2007) MicroRNAs regulate synthesis of the neurotransmitter substance P in human esenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci USA 104:15484–15489PubMedCrossRefGoogle Scholar
  29. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227PubMedCrossRefGoogle Scholar
  30. Hatchell EC, Colley SM, Beveridge DJ et al (2006) SLIRP, a small SRA binding protein, is a nuclear receptor corepressor. Mol Cell 22:657–668PubMedCrossRefGoogle Scholar
  31. Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632PubMedCrossRefGoogle Scholar
  32. He Y, Vogelstein B, Velculescu VE et al (2008) The antisense transcriptomes of human cells. Science 322:1855–1857PubMedCrossRefGoogle Scholar
  33. Hebert SS, Horre K, Nicolai L et al (2008a) MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis doi:10.1016/j.nbd.2008.11.009Google Scholar
  34. Hebert SS, Horre K, Nicolai L et al (2008b) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420PubMedCrossRefGoogle Scholar
  35. Hobert O (2008) Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc Natl Acad Sci USA 105:20067–20071PubMedCrossRefGoogle Scholar
  36. Hon LS, Zhang Z (2007) The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8:R166PubMedCrossRefGoogle Scholar
  37. Horike S, Mitsuya K, Meguro M et al (2000) Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 9:2075–2083PubMedCrossRefGoogle Scholar
  38. Imamura T, Miyauchi-Senda N, Tanaka S et al (2004a) Identification of genetic and epigenetic similarities of SPHK1/Sphk1 in mammals. J Vet Med Sci 66:1387–1393PubMedCrossRefGoogle Scholar
  39. Imamura T, Yamamoto S, Ohgane J et al (2004b) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322:593–600PubMedCrossRefGoogle Scholar
  40. Johnson R, Teh CH, Jia H et al (2009) Regulation of neural macroRNAs by the transcriptional repressor REST. RNA 15:85–96PubMedCrossRefGoogle Scholar
  41. Kanduri C, Thakur N, Pandey RR (2006) The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 25:2096–2106PubMedCrossRefGoogle Scholar
  42. Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224PubMedCrossRefGoogle Scholar
  43. Kiriakidou M, Tan GS, Lamprinaki S et al (2007) An mRNA m(7)G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151PubMedCrossRefGoogle Scholar
  44. Kobayashi S, Takashima A, Anzai K (1998) The dendritic translocation of translin protein in the form of BC1 RNA protein particles in developing rat hippocampal neurons in primary culture. Biochem Biophys Res Commun 253:448–453PubMedCrossRefGoogle Scholar
  45. Korneev SA, Korneeva EI, Lagarkova MA et al (2008) Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. RNA 14:2030–2037PubMedCrossRefGoogle Scholar
  46. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53PubMedCrossRefGoogle Scholar
  47. Kuwabara T, Hsieh J, Nakashima K et al (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793PubMedCrossRefGoogle Scholar
  48. Lanz RB, McKenna NJ, Onate SA et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:7–27CrossRefGoogle Scholar
  49. Lanz RB, Razani B, Goldberg AD et al (2002) Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci USA 99:16081–16086PubMedCrossRefGoogle Scholar
  50. Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7:1216–1222PubMedCrossRefGoogle Scholar
  51. Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176PubMedCrossRefGoogle Scholar
  52. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  53. Lu Y, Thomson JM, Wong HY et al (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453CrossRefGoogle Scholar
  54. Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884PubMedCrossRefGoogle Scholar
  55. Lukiw WJ (2007) MicroRNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18:297–300PubMedCrossRefGoogle Scholar
  56. Makeyev EV, Zhang J, Carrasco MA et al (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448PubMedCrossRefGoogle Scholar
  57. Mancini-Dinardo D, Steele SJ, Levorse JM et al (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20:1268–1282PubMedCrossRefGoogle Scholar
  58. Maris JM, Hogarty MD, Bagatell R et al (2007) Neuroblastoma. Lancet 369:2106–2120PubMedCrossRefGoogle Scholar
  59. Mathieu O, Bender J (2004) RNA-directed DNA methylation. J Cell Sci 117:4881–4888PubMedCrossRefGoogle Scholar
  60. Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492PubMedCrossRefGoogle Scholar
  61. Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222PubMedCrossRefGoogle Scholar
  62. Morris KV, Chan SW, Jacobsen SE et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292PubMedCrossRefGoogle Scholar
  63. Nakamura K, Sakaue H, Nishizawa A et al (2008) PDK1 regulates cell proliferation and cell cycle progression through control of cyclin D1 and p27Kip1 expression. J Biol Chem 283:17702–17711PubMedCrossRefGoogle Scholar
  64. Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054PubMedCrossRefGoogle Scholar
  65. Nguyen VT, Kiss T, Michels AA et al (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325PubMedCrossRefGoogle Scholar
  66. Packer AN, Xing Y, Harper SQ et al (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28:14341–14346PubMedCrossRefGoogle Scholar
  67. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172PubMedCrossRefGoogle Scholar
  68. Peters J, Beechey C (2004) Identification and characterisation of imprinted genes in the mouse. Brief Funct Genomic Proteomic 2:320–333PubMedCrossRefGoogle Scholar
  69. Pfeffer S, Zavolan M, Grässer FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRefGoogle Scholar
  70. Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309:1573–1576PubMedCrossRefGoogle Scholar
  71. Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126PubMedCrossRefGoogle Scholar
  72. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565PubMedCrossRefGoogle Scholar
  73. Preker P, Nielsen J, Kammler S et al (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–1854PubMedCrossRefGoogle Scholar
  74. Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910PubMedCrossRefGoogle Scholar
  75. Rovelet-Lecrux A, Hannequin D, Raux G et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26PubMedCrossRefGoogle Scholar
  76. Royo H, Cavaillé J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166PubMedCrossRefGoogle Scholar
  77. Runte M, Huttenhofer A, Gross S et al (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700PubMedCrossRefGoogle Scholar
  78. Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289PubMedCrossRefGoogle Scholar
  79. Seila AC, Calabrese JM, Levine SS et al (2008) Divergent transcription from active promoters. Science 322:1849–1851PubMedCrossRefGoogle Scholar
  80. Sevignani C, Calin GA, Nnadi SC et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022PubMedCrossRefGoogle Scholar
  81. Shi Y, Downes M, Xie W et al (2001) SHARP, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 15:1140–1151PubMedCrossRefGoogle Scholar
  82. Shiota K (2004) DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res 105:325–334PubMedCrossRefGoogle Scholar
  83. Singh SK, Kagalwala MN, Parker-Thornburg J et al (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227PubMedCrossRefGoogle Scholar
  84. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837PubMedCrossRefGoogle Scholar
  85. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813PubMedGoogle Scholar
  86. Szymanski M, Barciszewska MZ, Erdmann VA et al (2005) A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta 1756:65–75PubMedGoogle Scholar
  87. Teixeira FK, Heredia F, Sarazin A et al (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604PubMedCrossRefGoogle Scholar
  88. Theuns J, Brouwers N, Engelborghs S et al (2006) Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 78:936–946PubMedCrossRefGoogle Scholar
  89. Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390PubMedGoogle Scholar
  90. Tochitani S, Hayashizaki Y (2008) Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochem Biophys Res Commun 372:691–696PubMedCrossRefGoogle Scholar
  91. Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355PubMedCrossRefGoogle Scholar
  92. Turner JD, Schote AB, Macedo JA et al (2006) Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 72:1529–1537PubMedCrossRefGoogle Scholar
  93. Ubeda F, Wilkins JF (2008) Imprinted genes and human disease: an evolutionary perspective. Adv Exp Med Biol 626:101–115PubMedCrossRefGoogle Scholar
  94. Umlauf D, Goto Y, Cao R et al (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300PubMedCrossRefGoogle Scholar
  95. Vitali P, Basyuk E, Le Meur E et al (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753PubMedCrossRefGoogle Scholar
  96. Vo N, Klein ME, Varlamova O et al (2005) A cAMP-response element-binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431PubMedCrossRefGoogle Scholar
  97. Wang H, Iacoangeli A, Lin D et al (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821PubMedCrossRefGoogle Scholar
  98. Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289PubMedCrossRefGoogle Scholar
  99. Wayman GA, Davare M, Ando H et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 1059093–1059098Google Scholar
  100. Weiss A, Keshet I, Razin A et al (1996) DNA demethylation in vitro: involvement of RNA. Cell 86:709–718PubMedCrossRefGoogle Scholar
  101. Yamasaki Y, Kayashima T, Soejima H et al (2005) Neuron-specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. Hum Mol Genet 14:2511–2520PubMedCrossRefGoogle Scholar
  102. Yang PK, Kuroda MI (2007) Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell 128:777–786PubMedCrossRefGoogle Scholar
  103. Yang Z, Zhu Q, Luo K et al (2001) The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–322PubMedCrossRefGoogle Scholar
  104. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596PubMedCrossRefGoogle Scholar
  105. Yik JH, Chen R, Nishimura R et al (2003) Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 12:971–982PubMedCrossRefGoogle Scholar
  106. Yu J, Ryan DG, Getsios S et al (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 105:19300–19305PubMedCrossRefGoogle Scholar
  107. Zeng Y (2006) Principles of micro-RNA production and maturation. Oncogene 25:6156–6162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Bioorganic Chemistry of the Polish Academy of SciencesPoznanPoland

Personalised recommendations