Advertisement

Distributed Public-Key Cryptography from Weak Secrets

  • Michel Abdalla
  • Xavier Boyen
  • Céline Chevalier
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5443)

Abstract

We introduce the notion of distributed password-based public-key cryptography, where a virtual high-entropy private key is implicitly defined as a concatenation of low-entropy passwords held in separate locations. The users can jointly perform private-key operations by exchanging messages over an arbitrary channel, based on their respective passwords, without ever sharing their passwords or reconstituting the key.

Focusing on the case of ElGamal encryption as an example, we start by formally defining ideal functionalities for distributed public-key generation and virtual private-key computation in the UC model. We then construct efficient protocols that securely realize them in either the RO model (for efficiency) or the CRS model (for elegance).

We conclude by showing that our distributed protocols generalize to a broad class of “discrete-log”-based public-key cryptosystems, which notably includes identity-based encryption. This opens the door to a powerful extension of IBE with a virtual PKG made of a group of people, each one memorizing a small portion of the master key.

Keywords

Private Computation Universal Composability ElGamal Encryption Common Random String Password Guess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th FOCS, pp. 468–473. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  3. 3.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)Google Scholar
  5. 5.
    Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy, pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th ACM STOC, pp. 1–10. ACM Press, New York (1988)Google Scholar
  7. 7.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  13. 13.
    Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication in the presence of break-ins. Journal of Cryptology 13(1), 61–105 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th ACM STOC, pp. 11–19. ACM Press, New York (1988)Google Scholar
  16. 16.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable byzantine agreement secure against faulty majorities. In: 21st ACM PODC, pp. 118–126. ACM Press, New York (2002)Google Scholar
  20. 20.
    Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 351–368. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: 19th ACM STOC, pp. 218–229. ACM Press, New York (1987)Google Scholar
  24. 24.
    Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  25. 25.
    Holtby, D., Kapron, B.M., King, V.: Lower bound for scalable Byzantine agreement. In: 25th ACM PODC, pp. 285–291. ACM Press, New York (2006)Google Scholar
  26. 26.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In: ACM CCS 2005, pp. 180–189. ACM Press, New York (2005)Google Scholar
  28. 28.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: 21st ACM STOC, pp. 73–85. ACM Press, New York (1989)Google Scholar
  29. 29.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  30. 30.
    Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Xavier Boyen
    • 2
  • Céline Chevalier
    • 1
  • David Pointcheval
    • 1
  1. 1.Ecole Normale SupérieureCNRS-INRIAParisFrance
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations