Security of Blind Signatures under Aborts

  • Marc Fischlin
  • Dominique Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5443)

Abstract

We explore the security of blind signatures under aborts where the user or the signer may stop the interactive signature issue protocol prematurely. Several works on blind signatures discuss security only in regard of completed executions and usually do not impose strong security requirements in case of aborts. One of the exceptions is the paper of Camenisch, Neven and shelat (Eurocrypt 2007) where the notion of selective-failure blindness has been introduced. Roughly speaking, selective-failure blindness says that blindness should also hold in case the signer is able to learn that some executions have aborted.

Here we augment the work of Camenisch et al. by showing how to turn every secure blind signature scheme into a selective-failure blind signature scheme. Our transformation only requires an additional computation of a commitment and therefore adds only a negligible overhead. We also study the case of multiple executions and notions of selective-failure blindness in this setting. We then discuss the case of user aborts and unforgeability under such aborts. We show that every three-move blind signature scheme remains unforgeable under such user aborts. Together with our transformation for selective-failure blindness we thus obtain an easy solution to ensure security under aborts of either party and which is applicable for example to the schemes of Pointcheval and Stern (Journal of Cryptology, 2000).

We finally revisit the construction of Camenisch et al. for simulatable adaptive oblivious transfer protocols, starting from selective-failure blind signatures where each message only has one valid signature (uniqueness). While our transformation to achieve selective-failure blindness does not preserve uniqueness, it can still be combined with a modified version of their protocol. Hence, we can derive such oblivious transfer protocols based on unique blind signature schemes only (in the random oracle model), without necessarily requiring selective-failure blindness from scratch.

References

  1. 1.
    Abe, M.: A Secure Three-Move Blind Signature Scheme for Polynomially Many Signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Boldyreva, A.: Efficient Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology 13, 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chaum, D.: Blind Signatures for Untraceable Payments. In: Chaum, D. (ed.) Advances in Cryptology — Crypto 1982, pp. 199–203. Plemum, New York (1983)Google Scholar
  6. 6.
    Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Damgȧrd, I., Pedersen, T., Pfitzmann, B.: On the Existence of Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures. Journal of Cryptology 10(3), 163–194 (1997)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Horvitz, O., Katz, J.: Universally-composable two-party computation in two rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Kiayias, A., Zhou, H.-S.: Two-Round Concurrent Blind Signatures without Random Oracles. Number 2005/435 in Cryptology eprint archive (2005), eprint.iacr.org
  18. 18.
    Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Naor, M.: Bit Commitment Using Pseudo-Randomness. Journal of Cryptology 4(2), 151–158 (1991)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. Journal of Cryptology 18(1), 1–35 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)CrossRefMATHGoogle Scholar
  23. 23.
    Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, Aiken Computation Laboratory (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marc Fischlin
    • 1
  • Dominique Schröder
    • 1
  1. 1.Darmstadt University of TechnologyGermany

Personalised recommendations