Asynchronous Multiparty Computation: Theory and Implementation

  • Ivan Damgård
  • Martin Geisler
  • Mikkel Krøigaard
  • Jesper Buus Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5443)

Abstract

We propose an asynchronous protocol for general multiparty computation. The protocol has perfect security and communication complexity \(\mathcal{O}(n^2|C|k)\), where n is the number of parties, |C| is the size of the arithmetic circuit being computed, and k is the size of elements in the underlying field. The protocol guarantees termination if the adversary allows a preprocessing phase to terminate, in which no information is released. The communication complexity of this protocol is the same as that of a passively secure solution up to a constant factor. It is secure against an adaptive and active adversary corrupting less than n/3 players. We also present a software framework for implementation of asynchronous protocols called VIFF (Virtual Ideal Functionality Framework), which allows automatic parallelization of primitive operations such as secure multiplications, without having to resort to complicated multithreading. Benchmarking of a VIFF implementation of our protocol confirms that it is applicable to practical non-trivial secure computations.

References

  1. 1.
    Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. ACM (1988)Google Scholar
  2. 2.
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Beerliová-Trubíniová, Z., Hirt, M., Nielsen, J.B.: Almost-asynchronous multi-party computation with faulty minority (manuscript, 2008)Google Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC [1], pp. 1–10Google Scholar
  5. 5.
    Bogetoft, P., Christensen, D.L., Damgard, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Multiparty computation goes live. Cryptology ePrint Archive, Report 2008/068 (2008), http://eprint.iacr.org/
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE, Los Alamitos (2001)Google Scholar
  7. 7.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC [1], pp. 11–19 (1988)Google Scholar
  8. 8.
    Cramer, R., Damgård, I.B., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Damgård, I.B., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM, New York (1987)Google Scholar
  11. 11.
    Hirt, M., Maurer, U.M.: Robustness for free in unconditional multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Martin Geisler
    • 1
  • Mikkel Krøigaard
    • 1
  • Jesper Buus Nielsen
    • 1
  1. 1.Dept. of Computer ScienceUniversity of AarhusDenmark

Personalised recommendations