Secret Sharing and Non-Shannon Information Inequalities

  • Amos Beimel
  • Ilan Orlov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5444)

Abstract

The known secret-sharing schemes for most access structures are not efficient; even for a one-bit secret the length of the shares in the schemes is 2O(n), where n is the number of participants in the access structure. It is a long standing open problem to improve these schemes or prove that they cannot be improved. The best known lower bound is by Csirmaz (J. Cryptology 97), who proved that there exist access structures with n participants such that the size of the share of at least one party is n/logn times the secret size. Csirmaz’s proof uses Shannon information inequalities, which were the only information inequalities known when Csirmaz published his result. On the negative side, Csirmaz proved that by only using Shannon information inequalities one cannot prove a lower bound of ω(n) on the share size. In the last decade, a sequence of non-Shannon information inequalities were discovered. This raises the hope that these inequalities can help in improving the lower bounds beyond n. However, in this paper we show that all the inequalities known to date cannot prove a lower bound of ω(n) on the share size.

References

  1. 1.
    Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Combinatorica 19(3), 301–319 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. on Info. Theory 40(3), 786–794 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beimel, A., Franklin, M.: Weakly-private secret sharing schemes. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 253–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Beimel, A., Livne, N., Padró, C.: Matroids can be far from ideal secret sharing. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 194–212. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: 14th CCS, pp. 172–184 (2007)Google Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th STOC, pp. 1–10 (1988)Google Scholar
  7. 7.
    Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the 1979 AFIPS National Computer Conference, pp. 313–317 (1979)Google Scholar
  9. 9.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. Theoretical Computer Science 154(2), 283–306 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Blundo, C., De Santis, A., Vaccaro, U.: On secret sharing schemes. Inform. Process. Lett. 65(1), 25–32 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combin. Math. and Combin. Comput. 6, 105–113 (1989)MathSciNetMATHGoogle Scholar
  12. 12.
    Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for secret sharing schemes. J. of Cryptology 6(3), 157–168 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    Chan, T.H., Yeung, R.W.: On a relation between information inequalities and group theory. IEEE Trans. on Info. Theory 48(7), 1992–1995 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)Google Scholar
  15. 15.
    Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. of Cryptology 6(2), 87–96 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Chichester (1991)CrossRefMATHGoogle Scholar
  17. 17.
    Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Csirmaz, L.: The size of a share must be large. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  19. 19.
    Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar. 32(3–4), 429–437 (1996)MathSciNetMATHGoogle Scholar
  20. 20.
    Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    van Dijk, M.: A linear construction of perfect secret sharing schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 23–34. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    van Dijk, M.: On the information rate of perfect secret sharing schemes. Designs, Codes and Cryptography 6, 143–169 (1995)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dougherty, R., Freiling, C., Zeger, K.: Six new non-Shannon information inequalities. In: ISIT 2006, pp. 233–236 (2006)Google Scholar
  24. 24.
    Dougherty, R., Freiling, C., Zeger, K.: Networks, matroids, and non-Shannon information inequalities. IEEE Trans. on Info. Theory 53(6), 1949–1969 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Fujishige, S.: Polymatroidal dependence structure of a set of random variables. Information and Control 39(1–3), 55–72 (1978)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Gál, A.: A characterization of span program size and improved lower bounds for monotone span programs. Computational Complexity 10(4), 277–296 (2002)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: 13th CCS, pp. 89–98 (2006)Google Scholar
  28. 28.
    Guille, L., Chan, T.H., Grant, A.: The minimal set of Ingleton inequalities. Technical Report 0802.2574, arxiv.org (2008), http://arxiv.org/abs/0802.2574
  29. 29.
    Ingleton, A.W.: Conditions for representability and transversability of matroids. In: Proc. Fr. Br. Conf. 1970, pp. 62–67. Springer, Heidelberg (1971)Google Scholar
  30. 30.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Globecom 1987, pp. 99–102 (1987)Google Scholar
  31. 31.
    Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th IEEE Structure in Complexity Theory, pp. 102–111 (1993)Google Scholar
  32. 32.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. on Info. Theory 29(1), 35–41 (1983)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Makarychev, K., Makarychev, Y., Romashchenko, A., Vereshchagin, N.: A new class of non-Shannon type inequalities for entropies. Communications in Information and Systems 2(2), 147–166 (2002)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Matúš, F.: Infinitely many information inequalities. In: IEEE International Symposium on Information Theory 2007, pp. 41–44 (2007)Google Scholar
  35. 35.
    Matúš, F.: Two constructions on limits of entropy functions. IEEE Trans. on Info. Theory 53(1), 320–330 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE Transactions on Parallel and Distributed Systems 9(1), 909–922 (1998)CrossRefGoogle Scholar
  37. 37.
    Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)MATHGoogle Scholar
  38. 38.
    Rabin, M.O.: Randomized Byzantine generals. In: Proc. of the 24th IEEE Symp. on Foundations of Computer Science, pp. 403–409 (1983)Google Scholar
  39. 39.
    Riis, S.: Graph entropy, network coding and guessing games. Technical Report 0711.4175, arxiv.org (2007), http://arxiv.org/abs/0711.4175
  40. 40.
    Shamir, A.: How to share a secret. Comm. of the ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret schemes. Bulletin of the ICA 1, 71–88 (1991)MathSciNetMATHGoogle Scholar
  43. 43.
    Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. Technical Report 2008/290, Cryptology ePrint Archive (2008), http://eprint.iacr.org/
  44. 44.
    Xu, W., Wang, J., Sun, J.: A projection method for derivation of non-Shannon-type information inequalities. In: ISIT 2008, pp. 2116–2120 (2008)Google Scholar
  45. 45.
    Yeung, R.W.: A First Course in Information Theory. Springer, Heidelberg (2006)Google Scholar
  46. 46.
    Zhang, Z.: On a new non-Shannon type information inequality. Communications in Information and Systems 3(1), 47–60 (2003)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Zhang, Z., Yeung, R.W.: On characterization of entropy function via information inequalities. IEEE Trans. on Info. Theory 44(4), 1440–1452 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amos Beimel
    • 1
  • Ilan Orlov
    • 1
  1. 1.Dept. of Computer ScienceBen-Gurion University Be’er-ShevaIsrael

Personalised recommendations