Simple, Black-Box Constructions of Adaptively Secure Protocols

  • Seung Geol Choi
  • Dana Dachman-Soled
  • Tal Malkin
  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5444)

Abstract

We present a compiler for transforming an oblivious transfer (OT) protocol secure against an adaptive semi-honest adversary into one that is secure against an adaptive malicious adversary. Our compiler achieves security in the universal composability framework, assuming access to an ideal commitment functionality, and improves over previous work achieving the same security guarantee in two ways: it uses black-box access to the underlying protocol and achieves a constant multiplicative overhead in the round complexity. As a corollary, we obtain the first constructions of adaptively secure protocols in the stand-alone model using black-box access to a low-level primitive.

References

  1. [B81]
    Blum, M.: Coin flipping by telephone. In: CRYPTO (1981)Google Scholar
  2. [B98]
    Beaver, D.: Adaptively secure oblivious transfer. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 300–314. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. [BCNP04]
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS (2004)Google Scholar
  4. [C00]
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. [C01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS (2001)Google Scholar
  6. [CDMW08]
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Non-committing encryption and adaptively secure protocols from weaker assumptions (manuscript, 2008)Google Scholar
  7. [CDPW07]
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. [CKL06]
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology 19(2), 135–167 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC (2002)Google Scholar
  10. [CR03]
    Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. [DN00]
    Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 432. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)Google Scholar
  13. [GWZ08]
    Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and efficient adaptively secure oblivious transfer. Cryptology ePrint 2008/534 (2008)Google Scholar
  14. [H08]
    Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. [IKLP06]
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: STOC (2006)Google Scholar
  16. [IKOS07]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC (2007)Google Scholar
  17. [IPS08]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. [K88]
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)Google Scholar
  19. [K05]
    Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. [K07]
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. [KO04]
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. [LP07]
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. [NP01]
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)Google Scholar
  24. [PVW08]
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. [PW09]
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)Google Scholar
  26. [WW06]
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Seung Geol Choi
    • 1
  • Dana Dachman-Soled
    • 1
  • Tal Malkin
    • 1
  • Hoeteck Wee
    • 2
  1. 1.Columbia UniversityUSA
  2. 2.Queens College, CUNYUSA

Personalised recommendations