Soft Computing Methods for Global, Local and Personalized Modeling and Applications in Bioinformatics

  • Nikola Kasabov
Part of the Studies in Computational Intelligence book series (SCI, volume 196)


The paper is a comparative study of major modeling and pattern discovery approaches applicable to the area of Bioinformatics and the area of decision support systems in general. These approaches include inductive versus transductive reasoning, global, local, and personalized modeling and their potentials are illustrated on a case study of gene expression and clinical data related to cancer outcome prognosis. While inductive modeling is used to develop a model (function) from data on the whole problem space and then to recall it on new data, transductive modeling is concerned with the creation of single model for every new input vector based on some closest vectors from the existing problem space. The paper uses several techniques to illustrate these approaches – multiple linear regression, Bayesian inference, support vector machines, evolving connectionist systems (ECOS), weighted kNN – each of them providing different accuracy on specific problem and facilitating the discovery of different patterns and rules from data.


transductive reasoning personalized modeling knowledge discovery local modeling evolving connectionist systems Bioinformatics gene expression data medical decision support systems personalized probabilities cancer prognosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dow, J., Lindsay, G., Morrison, J.: Biochemistry Molecules, Cells and the Body, p. 592. Addison-Wesley, Boston (1995)Google Scholar
  2. 2.
    Baldi, P., Brunak, S.: Bioinformatics. A Machine Learning Approach, 2nd edn., p. 351. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Crick, F.: Central dogma of molecular biology. Nature 227, 561–563 (1970)CrossRefGoogle Scholar
  4. 4.
    Snustad, D.P., Simmons, M.J.: The Principles of Genetics. Wiley, Chichester (2003)Google Scholar
  5. 5.
    D’Haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)CrossRefGoogle Scholar
  6. 6.
    Collado-Vides, J., Hofestadt, R. (eds.): Gene Regulation and Metabolism. Post-Genomic Computational Approaches, p. 310. MIT Press, Cambridge (2002)Google Scholar
  7. 7.
    Marnellos, G., Mjolsness, E.D.: Gene network models and neural development. In: van Ooyen, A. (ed.) Modeling Neural Development, pp. 27–48. MIT Press, Cambridge (2003)Google Scholar
  8. 8.
    Quakenbush, J.: Microarray data normalization and transformation. Nature Genetics 32, 496–501 (2002)CrossRefGoogle Scholar
  9. 9.
    Bajic, V., et al.: Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates. J. Molecular Graphics and Modelling (21), 323–332 (2003)Google Scholar
  10. 10.
    Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 98(26), 15149 (2001)CrossRefGoogle Scholar
  11. 11.
    Perou, C., et al.: Molecular portraits of human breast tumours. Nature, 406 (2000)Google Scholar
  12. 12.
    Shipp, M.A., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)CrossRefGoogle Scholar
  13. 13.
    Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)CrossRefGoogle Scholar
  14. 14.
    van de Vijver, M.J., et al.: A Gene-Expression Signature as a Predictor of Survival in Breast Cancer. N Engl. J. Med. 347(25), 1999–2009 (2002)CrossRefGoogle Scholar
  15. 15.
    van ter Veer, L.J., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530 (2002)CrossRefGoogle Scholar
  16. 16.
    Vides, J., Magasanik, B., Smith, T.: Integrated approaches to molecular biology. MIT Press, Cambridge (1996)Google Scholar
  17. 17.
    Bower, J., Bolouri, H. (eds.): Computational Modelling of Genetic and Biochemical Networks. The MIT Press, Cambridge (2001)Google Scholar
  18. 18.
    LeCun, Y., Denker, J.S., Solla, S.A.: Brain damage. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, pp. 598–605. Morgan Kaufmann, San Francisco (1990)Google Scholar
  19. 19.
    Kasabov, N., Benuskova, L.: Computational neurogenetics. Journal of Computational and Theoretical Nanoscience 1(1) (in press, 2004)Google Scholar
  20. 20.
    Kasabov, N., et al.: Medical Decision Support Systems Utilizing Gene Expression and Clinical Information And Methods for Use. In PCT/US03/25563, USA, Pacific Edge Biotechnology Pte Ltd., USA (2003)Google Scholar
  21. 21.
    Sobral, B.: Bioinformatics and the future role of computing in biology. From Jay Lush to Genomics: Visions for animal breeding and genetics (1999)Google Scholar
  22. 22.
    Vapnik, V.N.: Statistical Learning Theory, p. 736. Wiley Inter-Science, Chichester (1998)zbMATHGoogle Scholar
  23. 23.
    Bosnic, Z., et al.: Evaluation of prediction reliability in regression using the transduction principle. EUROCON 2003. Computer as a Tool. The IEEE Region 8, 99–103 (2003)CrossRefGoogle Scholar
  24. 24.
    Chen, Y., Wang, G., Dong, S.: Learning with progressive transductive support vector machine. Pattern Recognition Letters 24(12), 1845–1855 (2003)CrossRefGoogle Scholar
  25. 25.
    Joachims, T.: Transductive Inference for Text Classification using Support Vector Machines. In: Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  26. 26.
    Wu, D., et al.: Large Margin Trees for Induction and Transduction. In: Proceedings for 16th International conference of machine learning. Morgan Kaufmann, Bled (1999)Google Scholar
  27. 27.
    Li, C.-h., Yuen, P.C.: Transductive Learning: Learning Iris Data with Two Labeled Data. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, p. 231. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Joachims, T.: Transductive Learning via Spectral Graph Partitioning. In: Proceedings of the Twentieth International Conference on Machine Learning, ICML 2003, Washington DC (2003)Google Scholar
  29. 29.
    Kasabov, N., Pang, S.: Transductive Support Vector Machines and Applications in Bioinformatics for Promoter Recognition. Neural Information Processing - Letters and Reviews 3(2), 31–38 (2004)Google Scholar
  30. 30.
    Li, J., Chua, C.-S.: Transductive inference for color-based particle filter tracking. In: Proceedings of International Conference on Image Processing, 2003. Nanyang Technol. Univ., Singapore (2003)Google Scholar
  31. 31.
    Proedrou, K., Nouretdinov, I., Vovk, V., Gammerman, A.J.: Transductive confidence machines for pattern recognition. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS, vol. 2430, p. 381. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Pang, S., Kasabov, N.: Inductive vs Transductive Inference, Global vs Local Models: SVM, TSVM, and SVMT for Gene Expression Classification Problems. In: International Joint Conference on Neural Networks, IJCNN 2004. IEEE Press, Budapest (2004)Google Scholar
  33. 33.
    Wolf, L., Mukherjee, S.: Transductive learning via Model selection. The center for Biological and Computational Learning, Massachusetts Institute of Technology: Cambridge, MA (2004)Google Scholar
  34. 34.
    Li, F., Wechsler, H.: Watch List Face Surveillance Using Transductive Inference. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 23–29. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Weston, J., et al.: Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics 19(6), 764–771 (2003)CrossRefGoogle Scholar
  36. 36.
    Kukar, M.: Transductive reliability estimation for medical diagnosis. Artifical intelligence in medicine 29, 81–106 (2003)CrossRefGoogle Scholar
  37. 37.
    Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Proceedings of the 1998 conference on Advances in neural information processing systems II. MIT Press, Cambridge (1998)Google Scholar
  38. 38.
    Liu, H., Huang, S.-T.: Evolutionary semi-supervised fuzzy clustering. Pattern Recognition Letters 24, 3105–3113 (2003)CrossRefGoogle Scholar
  39. 39.
    Song, Q., Kasabov, N.: TWRBF – Transductive RBF Neural Network with Weighted Data Normalization. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 633–640. Springer, Heidelberg (2004)Google Scholar
  40. 40.
    Shipp, M.A., et al.: Supplementary Information for Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)CrossRefGoogle Scholar
  41. 41.
    DeRisi, J., et al.: Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genetics 14(4), 457–460 (1996)CrossRefGoogle Scholar
  42. 42.
    Furey, T.S., et al.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)CrossRefGoogle Scholar
  43. 43.
    Mitchell, M.T.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  44. 44.
    Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  45. 45.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  46. 46.
    Futschik, M.E., Kasabov, N.K.: Fuzzy clustering of gene expression data. In: Fuzzy Systems, 2002. Proceedings of the 2002 IEEE International Conference on FUZZ-IEEE 2002 (2002)Google Scholar
  47. 47.
    Dembele, D., Kastner, P.: Fuzzy C-means method for clustering microarray data. Bioinformatics 19(8), 973–980 (2003)CrossRefGoogle Scholar
  48. 48.
    Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 96(12), 6745–6750 (1999)CrossRefGoogle Scholar
  49. 49.
    Lukashin, A.V., Fuchs, R.: Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17, 405–414 (2001)CrossRefGoogle Scholar
  50. 50.
    Arbib, M. (ed.): The Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  51. 51.
    Kasabov, N.: Evolving Connectionist Systems. Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines. Springer, London (2002)zbMATHGoogle Scholar
  52. 52.
    Kasabov, N., Song, Q.: GA-parameter optimisation of evolving connectionist systems for classification and a case study from bioinformatics. In: ICONIP 2002 - International Conference on Neuro-Information Processing, Singapore. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  53. 53.
    Kasabov, N.: Evolving fuzzy neural networks for on-line supervised/unsupervised, knowledge-based learning. IEEE Trans. SMC - part B, Cybernetics 31(6), 902–918 (2001)CrossRefGoogle Scholar
  54. 54.
    Kasabov, N.: Adaptive Learning method and system, in University of Otago, New Zealand (2000)Google Scholar
  55. 55.
    Kasabov, N., Song, Q.: DENFIS: Dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction. IEEE Trans. on Fuzzy Systems 10(2), 144–154 (2002)CrossRefGoogle Scholar
  56. 56.
    Kasabov, N., et al.: Medical Applications of Adaptive Learning Systems, PCT NZ03/00045, Pacific Edge Biotechnology Pte Ltd., New Zealand (2002)Google Scholar
  57. 57.
    Gollub, J., et al.: The Stanford Microarray Database: data access and quality assessment tools. Nucl. Acid. Res. 31(1), 94–96 (2003)CrossRefGoogle Scholar
  58. 58.
    Gollub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)CrossRefGoogle Scholar
  59. 59.
    Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  60. 60.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, Reading (1989)Google Scholar
  61. 61.
    Fogel, G., Corne, D.: Evolutionary Computation for Bioinformatics. Morgan Kaufmann Publ., San Francisco (2003)Google Scholar
  62. 62.
    Ando, S., Sakamoto, E., Iba, H.: Evolutionary Modelling and Inference of Genetic Networks. In: The 6th Joint Conference on Information Sciences (2002)Google Scholar
  63. 63.
    Kasabov, N., Dimitrov, D.: A method for gene regulatory network modelling with the use of evolving connectionist systems. In: ICONIP 2002 - International Conference on Neuro-Information Processing. IEEE Press, Singapore (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nikola Kasabov
    • 1
  1. 1.Knowledge Engineering and Discovery Research Institute, KEDRIAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations