Evaluating the Visual Syntax of UML: An Analysis of the Cognitive Effectiveness of the UML Family of Diagrams

  • Daniel Moody
  • Jos van Hillegersberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5452)


UML is a visual language. However surprisingly, there has been very little attention in either research or practice to the visual notations used in UML. Both academic analyses and official revisions to the standard have focused almost exclusively on semantic issues, with little debate about the visual syntax. We believe this is a major oversight and that as a result, UML’s visual development is lagging behind its semantic development. The lack of attention to visual aspects is surprising given that the form of visual representations is known to have an equal if not greater effect on understanding and problem solving performance than their content. The UML visual notations were developed in a bottom-up manner, by reusing and synthesising existing notations, with choice of graphical conventions based on expert consensus. We argue that this is an inappropriate basis for making visual representation decisions and they should be based on theory and empirical evidence about cognitive effectiveness. This paper evaluates the visual syntax of UML using a set of evidence-based principles for designing cognitively effective visual notations. The analysis reveals some serious design flaws in the UML visual notations together with practical recommendations for fixing them.


Unify Modelling Language Class Diagram Visual Variable Graphic Complexity Redundant Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison (1983)Google Scholar
  2. 2.
    Biederman, I.: Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)CrossRefGoogle Scholar
  3. 3.
    Britton, C., Jones, S.: The Untrained Eye: How Languages for Software Specification Support Understanding by Untrained Users. Human Computer Interaction 14, 191–244 (1999)CrossRefGoogle Scholar
  4. 4.
    Britton, C., Jones, S., Kutar, M., Loomes, M., Robinson, B.: Evaluating the intelligibility of diagrammatic languages used in the specification of software. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS, vol. 1889, pp. 376–391. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Cheng, P.C.-H., Lowe, R.K., Scaife, M.: Cognitive Science Approaches To Understanding Diagrammatic Representations. Artificial Intelligence Review 15(1/2), 79–94 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49(5), 109–114 (2006)CrossRefGoogle Scholar
  7. 7.
    Gehlert, A., Esswein, W.: Towards a Formal Research Framework for Ontological Analyses. Advanced Engineering Informatics 21, 119–131 (2007)CrossRefGoogle Scholar
  8. 8.
    Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with ADORA. Information Systems 27, 425–444 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goodman, N.: Languages of Art: An Approach to a Theory of Symbols. Bobbs-Merrill Co., Indianapolis (1968)Google Scholar
  10. 10.
    Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)Google Scholar
  11. 11.
    Gurr, C.A.: Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic Issues. Journal of Visual Languages and Computing 10, 317–342 (1999)CrossRefGoogle Scholar
  12. 12.
    Harel, D.: On Visual Formalisms. Communications of the ACM 31(5), 514–530 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jonkers, H., van Buuren, R., Hoppenbrouwers, S., Lankhorst, M., Veldhuijzen van Zanten, G.: ArchiMate Language Reference Manual (Version 4.1). Archimate Consortium, 73 (2007)Google Scholar
  14. 14.
    Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cognitive Science 11(1) (1987)Google Scholar
  15. 15.
    Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12(3), 78–85 (1997)CrossRefGoogle Scholar
  16. 16.
    Lohse, G.L.: The Role of Working Memory in Graphical Information Processing. Behaviour and Information Technology 16(6), 297–308 (1997)CrossRefGoogle Scholar
  17. 17.
    Marr, D.C.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Company, New York (1982)Google Scholar
  18. 18.
    Miller, G.A.: The Magical Number Seven, Plus Or Minus Two: Some Limits On Our Capacity For Processing Information. The Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  19. 19.
    Moody, D.L.: Evidence-based Notation Design: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Transactions on Software Engineering (under review, 2009)Google Scholar
  20. 20.
    Moody, D.L.: Review of ArchiMate: The Road to International Standardisation, Report commissioned by the ArchiMate Foundation and BiZZDesign B.V., Enschede, The Netherlands, 77 pages (2007)Google Scholar
  21. 21.
    Moody, D.L., Mueller, R.M., Amrit, C.: Review of ORES Methodology, Notation and Toolset, Report commissioned by Egon-Sparenberg B.V., Amsterdam, The Netherlands, 53 pages (2007)Google Scholar
  22. 22.
    Niemela, M., Saarinen, J.: Visual Search for Grouped versus Ungrouped Icons in a Computer Interface. Human Factors 42(4), 630–635 (2000)CrossRefGoogle Scholar
  23. 23.
    Nordbotten, J.C., Crosby, M.E.: The Effect of Graphic Style on Data Model Interpretation. Information Systems Journal 9(2), 139–156 (1999)CrossRefGoogle Scholar
  24. 24.
    Oberlander, J.: Grice for Graphics: Pragmatic Implicature in Network Diagrams. Information Design Journal 8(2), 163–179 (1996)CrossRefGoogle Scholar
  25. 25.
    OMG Unified Modeling Language Version 2.0: Superstructure. Object Management Group, OMG (2005)Google Scholar
  26. 26.
    Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the Bunge-Wand-Weber Model. Software and Systems Modelling 1(1), 43–67 (2002)Google Scholar
  27. 27.
    Peirce, C.S.: Charles S. Peirce: The Essential Writings (Great Books in Philosophy). Prometheus Books, Amherst (1998)Google Scholar
  28. 28.
    Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Communications of the ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  29. 29.
    Quinlan, P.T.: Visual Feature Integration Theory: Past, Present and Future. Psychological Bulletin 129(5), 643–673 (2003)CrossRefGoogle Scholar
  30. 30.
    Rossion, B., Pourtois, G.: Revisiting Snodgrass and Vanderwart’s object pictorial set: The role of surface detail in basic-level object recognition. Perception 33, 217–236 (2004)CrossRefGoogle Scholar
  31. 31.
    Rubin, E.: Synsoplerede Figuren. Gyldendalske, Copenhagen (1915)Google Scholar
  32. 32.
    Shanks, G.G., Tansley, E., Weber, R.A.: Using Ontology to Validate Conceptual Models. Communications of the ACM 46(10), 85–89 (2003)CrossRefGoogle Scholar
  33. 33.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1963)zbMATHGoogle Scholar
  34. 34.
    Siau, K.: Informational and Computational Equivalence in Comparing Information Modelling Methods. Journal of Database Management 15(1), 73–86 (2004)CrossRefGoogle Scholar
  35. 35.
    Siau, K., Cao, Q.: Unified Modeling Language: A Complexity Analysis. Journal of Database Management 12(1), 26–34 (2001)CrossRefGoogle Scholar
  36. 36.
    Tasker, D.: Worth 1,000 Words? Ha! Business Rules Journal 3(11) (2002)Google Scholar
  37. 37.
    Treisman, A.: Perceptual Grouping and Attention in Visual Search for Features and for Objects. Journal of Experimental Psychology: Human Perception and Performance 8, 194–214 (1982)Google Scholar
  38. 38.
    Treisman, A., Gelade, G.A.: A Feature Integration Theory of Attention. Cognitive Psychology 12, 97–136 (1980)CrossRefGoogle Scholar
  39. 39.
    Treisman, A., Gormican, S.: Feature Analysis in Early Vision: Evidence from Search Asymmetries. Psychological Review 95(1), 15–48 (1988)CrossRefGoogle Scholar
  40. 40.
    Wheildon, C.: Type and Layout: Are You Communicating or Just Making Pretty Shapes? Worsley Press, Hastings (2005)Google Scholar
  41. 41.
    White, A.W.: The Elements of Graphic Design: Space, Unity, Page Architecture and Type. Allworth Press, New York (2002)Google Scholar
  42. 42.
    Winn, W.D.: An Account of How Readers Search for Information in Diagrams. Contemporary Educational Psychology 18, 162–185 (1993)CrossRefGoogle Scholar
  43. 43.
    Winn, W.D.: Encoding and Retrieval of Information in Maps and Diagrams. IEEE Transactions on Professional Communication 33(3), 103–107 (1990)CrossRefGoogle Scholar
  44. 44.
    Yeh, M., Wickens, C.D.: Attention Filtering in the Design of Electronic Map Displays: A Comparison of Colour Coding, Intensity Coding and Decluttering Techniques. Human Factors 43(4), 543–562 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Moody
    • 1
  • Jos van Hillegersberg
    • 1
  1. 1.Department of Information Systems & Change ManagementUniversity of TwenteEnschedeNetherlands

Personalised recommendations