Advertisement

Scaling Search with Pattern Databases

  • Stefan Edelkamp
  • Shahid Jabbar
  • Peter Kissmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5348)

Abstract

In this paper, we illustrate efforts to perform memory efficient large-scale search. We first generate sets of disjoint symbolic pattern databases on disk. These pattern databases are then used for heuristic guidance, while applying explicit-state external-memory heuristic search. Different options for parallelization to save time and memory are presented. The general techniques are mapped to the (n 2 − 1)-puzzle as a large-scale case study.

Keywords

Model Check Binary Decision Diagram Heuristic Estimate Model Check Problem Pattern Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K., Holte, R., Schaeffer, J.: Partial pattern databases. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS, vol. 4612, pp. 20–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ball, M., Holte, R.: The compression power of symbolic pattern databases. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 2–11 (2008)Google Scholar
  3. 3.
    Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 142–170 (1992)CrossRefGoogle Scholar
  4. 4.
    Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Transactions on Programming Language Systems 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  5. 5.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Principles of Programming Languages (POPL), pp. 238–252 (1977)Google Scholar
  6. 6.
    Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(4), 318–334 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: Artificial Intelligence Planning and Scheduling (AIPS), pp. 274–293 (2002)Google Scholar
  8. 8.
    Edelkamp, S.: External symbolic heuristic search with pattern databases. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 51–60 (2005)Google Scholar
  9. 9.
    Edelkamp, S.: Optimizing admissible planning pattern database heuristics with genetic programming. In: Workshop on Model Checking and Artificial Intelligence (MoChArt), pp. 35–50 (2007)Google Scholar
  10. 10.
    Edelkamp, S., Jabbar, S., Schrödl, S.: External A*. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 233–250. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Edelkamp, S., Kissmann, P.: Limits and possibilities of BDDs for state space search. In: National Conference on Artificial Intelligence (AAAI), pp. 1452–1453 (2008)Google Scholar
  12. 12.
    Edelkamp, S., Kissmann, P.: Partial symbolic pattern databases for optimal sequential planning. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS, vol. 5243, pp. 193–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology Transfer 5, 247–267 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In: ICAPS-Workshop on Connecting Planning Theory with Practice (2004)Google Scholar
  15. 15.
    Felner, A., Korf, R., Hanan, S.: Additive pattern databases. Journal of Artificial Intelligence Research 22, 279–318 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Felner, A., Ofek, N.: Combining perimeter search and pattern database abstractions. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS, vol. 4612, pp. 155–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Haslum, P.: Domain-independent construction of pattern database heuristics for cost-optimal planning (2007); Personal communicationsGoogle Scholar
  18. 18.
    Hung, N.N.W.: Exploiting symmetry for formal verification. Master’s thesis, Faculty of the Graduate School, University of Texas at Austin (1997)Google Scholar
  19. 19.
    Jabbar, S., Edelkamp, S.: I/O efficient directed model checking. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 313–329. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Jabbar, S., Edelkamp, S.: Parallel external directed model checking with linear I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Jensen, R.M., Bryant, R.E., Veloso, M.M.: SetA*: An efficient BDD-based heuristic search algorithm. In: National Conference on Artificial Intelligence (AAAI), pp. 668–673 (2002)Google Scholar
  22. 22.
    Katz, M., Domshlak, C.: Optimal additive composition of abstraction-based admissible heuristics. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 174–181 (2008)Google Scholar
  23. 23.
    Katz, M., Domshlak, C.: Structural pattern heuristics via fork decomposition. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 182–189 (2008)Google Scholar
  24. 24.
    Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence Journal 27(1), 97–109 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases. In: National Conference on Artificial Intelligence (AAAI), pp. 700–705 (1997)Google Scholar
  26. 26.
    Korf, R.E.: Breadth-first frontier search with delayed duplicate detection. In: Workshop on Model Checking and Artificial Intelligence (MoChArt), pp. 87–92 (2003)Google Scholar
  27. 27.
    Korf, R.E., Felner, A.: Disjoint Pattern Database Heuristics. In: Chips Challenging Champions: Games, Computers and Artificial Intelligence, pp. 13–26. Elsevier, Amsterdam (2002)Google Scholar
  28. 28.
    Korf, R.E., Felner, A.: Recent progress in heuristic search: A case study of the four-peg towers of hanoi problem. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 2324–2329 (2007)Google Scholar
  29. 29.
    Kunkle, D., Cooperman, G.: Solving Rubik’s Cube: disk is the new RAM. Communications of the ACM 51(4), 31–33 (2008)CrossRefGoogle Scholar
  30. 30.
    Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  31. 31.
    McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  32. 32.
    Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges for efficient boolean function manipulation. In: Design Automation Conference (DAC), pp. 52–57. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  33. 33.
    Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 687–694 (1999)Google Scholar
  34. 34.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)Google Scholar
  35. 35.
    Qian, K.: Formal Verification Using Heuristic Search and Abstraction Techniques. PhD thesis, Computer Science & Engineering, The University of New South Wales (2006)Google Scholar
  36. 36.
    Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Ratner, D., Warmuth, M.K.: The (n 2 − 1)-puzzle and related relocation problems. Journal of Symbolic Computation 10(2), 111–137 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhou, R., Hansen, E.: External-memory pattern databases using structured duplicate detection. In: National Conference on Artificial Intelligence (AAAI), pp. 1398–1405 (2005)Google Scholar
  39. 39.
    Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artificial Intelligence Journal 170(4–5), 385–408 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefan Edelkamp
    • 1
  • Shahid Jabbar
    • 1
  • Peter Kissmann
    • 1
  1. 1.Technische Universität DortmundGermany

Personalised recommendations