Scaling Search with Pattern Databases

  • Stefan Edelkamp
  • Shahid Jabbar
  • Peter Kissmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5348)

Abstract

In this paper, we illustrate efforts to perform memory efficient large-scale search. We first generate sets of disjoint symbolic pattern databases on disk. These pattern databases are then used for heuristic guidance, while applying explicit-state external-memory heuristic search. Different options for parallelization to save time and memory are presented. The general techniques are mapped to the (n2 − 1)-puzzle as a large-scale case study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K., Holte, R., Schaeffer, J.: Partial pattern databases. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS, vol. 4612, pp. 20–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ball, M., Holte, R.: The compression power of symbolic pattern databases. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 2–11 (2008)Google Scholar
  3. 3.
    Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 142–170 (1992)CrossRefGoogle Scholar
  4. 4.
    Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Transactions on Programming Language Systems 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  5. 5.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Principles of Programming Languages (POPL), pp. 238–252 (1977)Google Scholar
  6. 6.
    Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(4), 318–334 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: Artificial Intelligence Planning and Scheduling (AIPS), pp. 274–293 (2002)Google Scholar
  8. 8.
    Edelkamp, S.: External symbolic heuristic search with pattern databases. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 51–60 (2005)Google Scholar
  9. 9.
    Edelkamp, S.: Optimizing admissible planning pattern database heuristics with genetic programming. In: Workshop on Model Checking and Artificial Intelligence (MoChArt), pp. 35–50 (2007)Google Scholar
  10. 10.
    Edelkamp, S., Jabbar, S., Schrödl, S.: External A*. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 233–250. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Edelkamp, S., Kissmann, P.: Limits and possibilities of BDDs for state space search. In: National Conference on Artificial Intelligence (AAAI), pp. 1452–1453 (2008)Google Scholar
  12. 12.
    Edelkamp, S., Kissmann, P.: Partial symbolic pattern databases for optimal sequential planning. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS, vol. 5243, pp. 193–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology Transfer 5, 247–267 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In: ICAPS-Workshop on Connecting Planning Theory with Practice (2004)Google Scholar
  15. 15.
    Felner, A., Korf, R., Hanan, S.: Additive pattern databases. Journal of Artificial Intelligence Research 22, 279–318 (2004)MathSciNetMATHGoogle Scholar
  16. 16.
    Felner, A., Ofek, N.: Combining perimeter search and pattern database abstractions. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS, vol. 4612, pp. 155–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Haslum, P.: Domain-independent construction of pattern database heuristics for cost-optimal planning (2007); Personal communicationsGoogle Scholar
  18. 18.
    Hung, N.N.W.: Exploiting symmetry for formal verification. Master’s thesis, Faculty of the Graduate School, University of Texas at Austin (1997)Google Scholar
  19. 19.
    Jabbar, S., Edelkamp, S.: I/O efficient directed model checking. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 313–329. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Jabbar, S., Edelkamp, S.: Parallel external directed model checking with linear I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Jensen, R.M., Bryant, R.E., Veloso, M.M.: SetA*: An efficient BDD-based heuristic search algorithm. In: National Conference on Artificial Intelligence (AAAI), pp. 668–673 (2002)Google Scholar
  22. 22.
    Katz, M., Domshlak, C.: Optimal additive composition of abstraction-based admissible heuristics. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 174–181 (2008)Google Scholar
  23. 23.
    Katz, M., Domshlak, C.: Structural pattern heuristics via fork decomposition. In: International Conference on Automated Planning and Scheduling (ICAPS), pp. 182–189 (2008)Google Scholar
  24. 24.
    Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence Journal 27(1), 97–109 (1985)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases. In: National Conference on Artificial Intelligence (AAAI), pp. 700–705 (1997)Google Scholar
  26. 26.
    Korf, R.E.: Breadth-first frontier search with delayed duplicate detection. In: Workshop on Model Checking and Artificial Intelligence (MoChArt), pp. 87–92 (2003)Google Scholar
  27. 27.
    Korf, R.E., Felner, A.: Disjoint Pattern Database Heuristics. In: Chips Challenging Champions: Games, Computers and Artificial Intelligence, pp. 13–26. Elsevier, Amsterdam (2002)Google Scholar
  28. 28.
    Korf, R.E., Felner, A.: Recent progress in heuristic search: A case study of the four-peg towers of hanoi problem. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 2324–2329 (2007)Google Scholar
  29. 29.
    Kunkle, D., Cooperman, G.: Solving Rubik’s Cube: disk is the new RAM. Communications of the ACM 51(4), 31–33 (2008)CrossRefGoogle Scholar
  30. 30.
    Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  31. 31.
    McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)CrossRefMATHGoogle Scholar
  32. 32.
    Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges for efficient boolean function manipulation. In: Design Automation Conference (DAC), pp. 52–57. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  33. 33.
    Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 687–694 (1999)Google Scholar
  34. 34.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)Google Scholar
  35. 35.
    Qian, K.: Formal Verification Using Heuristic Search and Abstraction Techniques. PhD thesis, Computer Science & Engineering, The University of New South Wales (2006)Google Scholar
  36. 36.
    Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Ratner, D., Warmuth, M.K.: The (n 2 − 1)-puzzle and related relocation problems. Journal of Symbolic Computation 10(2), 111–137 (1990)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Zhou, R., Hansen, E.: External-memory pattern databases using structured duplicate detection. In: National Conference on Artificial Intelligence (AAAI), pp. 1398–1405 (2005)Google Scholar
  39. 39.
    Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artificial Intelligence Journal 170(4–5), 385–408 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefan Edelkamp
    • 1
  • Shahid Jabbar
    • 1
  • Peter Kissmann
    • 1
  1. 1.Technische Universität DortmundGermany

Personalised recommendations