A Hybrid Approach for Knowledge-Based Product Recommendation

  • Manish Godse
  • Rajendra Sonar
  • Anil Jadhav
Part of the Communications in Computer and Information Science book series (CCIS, volume 31)

Abstract

Knowledge-based recommendation has proven to be useful approach for product recommendation where individual products are described in terms of well defined set of features. However existing knowledge-based recommendation systems lack on some issues: it does not allow customers to set importance to the feature with matching options and, it is not possible to set cutoff at individual feature as well as case level at runtime during product recommendation process. In this paper, we have presented a hybrid approach, which integrates rule based reasoning (RBR) and case based reasoning (CBR) techniques to address these issues. We have also described how case based reasoning can be used for clustering i.e. identifying products, which are similar to each other in the product catalog. This is useful when user likes a particular product and wants to see other similar products.

Keywords

knowledge-based recommendation product recommendation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–52 (1994)Google Scholar
  2. 2.
    Ricci, F., Nguyen, Q.N.: Acquiring and Revising Preferences in a Critique-Based Mobile Recommender System. IEEE Intelligent systems 22(3), 22–29 (2007)CrossRefGoogle Scholar
  3. 3.
    Linden, G., Smith, B., York, J.: Amazon.com Recommendations Item-to-Item Collaborative Filtering. IEEE Internet Computing, 76–80 (January-February 2003)Google Scholar
  4. 4.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  5. 5.
    Resnick, P., Varian, H.R.: Recommander Systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  6. 6.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Lawrence, R.D., Almasi, G.S., Kotlyar, V., Viveros, M.S., Duri, S.S.: Personalization of supermarket product recommendations. Data Mining and Knowledge Discovery 5(1-2), 11–32 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Sonar, R.M.: An Enterprise Intelligent System Development and Solution Framework. International journal of applied science, engineering and technology 4(1), 1307–4318 (2007)MathSciNetGoogle Scholar
  9. 9.
    Burke, R.: Knowledge-based Recommender Systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Systems, New York, vol. 69(32) (2000)Google Scholar
  10. 10.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the world wide web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Felfernig, A., Gula, B., Leitner, G., Maier, M., Melcher, R., Teppan, E.: Persuasion in knowledge-based recommendation. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 71–82. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Stahl, A.: Combining case-based and similarity-based product recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 355–369. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Smyth, B.: Case-based recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lim, M., Kim, J.: An adaptive recommendation system with a coordinator agent. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS, vol. 2198, pp. 438–442. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Burke, R.: Hybrid recommender systems with case-based components. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 91–105. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Burke, R.: Hybrid systems for personalized recommendations. In: Mobasher, B., Anand, S.S. (eds.) ITWP 2003. LNCS (LNAI), vol. 3169, pp. 133–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Aguzzoli, S., Avesani, P., Massa, P.: Collaborative case-based recommender systems. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, p. 460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Nguyen, A., Denos, N., Berrut, C.: Improving New User Recommendations with Rule-based Induction on Cold User Data. In: ACM conference on Recommender systems, pp. 121–128 (2007)Google Scholar
  21. 21.
    Ishikawa, M., Geczy, P., Izumi, N., Morita, T., Yamaguchi, T.: Information Diffusion Approach to Cold-Start Problem. In: 2007 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops (wi-iatw), pp. 129–132 (2007)Google Scholar
  22. 22.
    Rubens, N., Sugiyama, M.: Influence-based collaborative active learning. In: ACM Conference On Recommender Systems, pp. 145–148 (2007)Google Scholar
  23. 23.
    Burke, R.: Integrating Knowledge-Based and Collaborative-Filtering Recommender Systems. In: AAAI Workshop on AI in Electronic Commerce, pp. 69–72. AAAI, Menlo Park (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Manish Godse
    • 1
  • Rajendra Sonar
    • 1
  • Anil Jadhav
    • 1
  1. 1.SJM School of ManagementIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations