Detecting Protein-Protein Interactions in Biomedical Texts Using a Parser and Linguistic Resources

  • Gerold Schneider
  • Kaarel Kaljurand
  • Fabio Rinaldi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5449)

Abstract

We describe the task of automatically detecting interactions between proteins in biomedical literature. We use a syntactic parser, a corpus annotated for proteins, and manual decisions as training material.

After automatically parsing the GENIA corpus, which is manually annotated for proteins, all syntactic paths between proteins are extracted. These syntactic paths are manually disambiguated between meaningful paths and irrelevant paths. Meaningful paths are paths that express an interaction between the syntactically connected proteins, irrelevant paths are paths that do not convey any interaction.

The resource created by these manual decisions is used in two ways. First, words that appear frequently inside a meaningful paths are learnt using simple machine learning. Second, these resources are applied to the task of automatically detecting interactions between proteins in biomedical literature. We use the IntAct corpus as an application corpus.

After detecting proteins in the IntAct texts, we automatically parse them and classify the syntactic paths between them using the meaningful paths from the resource created on GENIA and addressing sparse data problems by shortening the paths based on the words frequently appearing inside the meaningful paths, so-called transparent words.

We conduct an evaluation showing that we achieve acceptable recall and good precision, and we discuss the importance of transparent words for the task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nedellec, C.: Learning language in logic – genic interaction extraction challenge. In: Proceedings of LLL 2005, pp. 31–37 (2006)Google Scholar
  2. 2.
    Krallinger, M., Leitner, F., Rodriguez-Penagos, C., Valencia, A.: Overview of the protein-protein interaction annotation extraction task of biocreative ii. Genome Biology 9 (suppl. 2) (2008)Google Scholar
  3. 3.
    Rebholz-Schuhmann, D., Kirsch, H., Arregui, M., Gaudan, S., Riethoven, M., Stoehr, P.: EBIMed – text crunching to gather facts for proteins from Medline. Bioinformatics 23(2), 237–244 (2006)CrossRefGoogle Scholar
  4. 4.
    Giuliano, C., Lavelli, A., Romano, L.: Exploiting shallow linguistic information for relation extraction from biomedical literature. In: Proceedings of EACL 2006 (2006)Google Scholar
  5. 5.
    Rinaldi, F., Schneider, G., Kaljurand, K., Hess, M., Romacker, M.: An environment for relation mining over richly annotated corpora: the case of GENIA. BMC Bioinformatics 7(suppl. 3) (2006)Google Scholar
  6. 6.
    Fundel, K., Küffner, R., Zimmer, R.: RelEx – relation extraction extraction using dependency parse trees. Bioinformatics 23(3), 365–371 (2007)CrossRefGoogle Scholar
  7. 7.
    Erkan, G., Ozgur, A., Radev, D.R.: Extracting interacting protein pairs and evidence sentences by using dependency parsing and machine learning techniques. In: Proceedings of BioCreAtIvE 2 (2007)Google Scholar
  8. 8.
    Kim, S., Yoon, J., Yang, J.: Kernel approaches for genic interaction extraction. Bioinformatics 9(10) (2008)Google Scholar
  9. 9.
    Landeghem, S.V., Saeys, Y., de Peer, Y.V.: Extracting protein-protein interactions from text using rich feature vectors and feature selection. In: Proceedings of the Third International Symposium on Semantic Mining in Biomedicine (SMBM 2008), Turku, Finland (2008)Google Scholar
  10. 10.
    Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R., Hermjakob, H.: Intact: open source resource for molecular interaction data. Nucleic Acids Res. (35 Database), D561–D565 (2006)Google Scholar
  11. 11.
    Kaljurand, K., Rinaldi, F., Kappeler, T., Schneider, G.: Detecting and grounding terms in biomedical literature. In: CICLing 2009, 10th International Conference on Intelligent Text Processing and Computational Linguistics, Mexico City, Mexico (2009)Google Scholar
  12. 12.
    Schneider, G., Kaljurand, K., Rinaldi, F., Kuhn, T.: Pro3Gres parser in the CoNLL domain adaptation shared task. In: Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, Prague, pp. 1161–1165 (2007)Google Scholar
  13. 13.
    Haverinen, K., Ginter, F., Pyysalo, S., Salakoski, T.: Accurate conversion of dependency parses: targeting the stanford scheme. In: Proceedings of Third International Symposium on Semantic Mining in Biomedicine (SMBM 2008), Turku, Finland (2008)Google Scholar
  14. 14.
    Collins, M., Brooks, J.: Prepositional attachment through a backed-off model. In: Proceedings of the Third Workshop on Very Large Corpora, Cambridge, MA (1995)Google Scholar
  15. 15.
    Collins, M.: Head-driven statistical models for natural language parsing. Computational Linguistics 29, 589–637 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gerold Schneider
    • 1
  • Kaarel Kaljurand
    • 1
  • Fabio Rinaldi
    • 1
  1. 1.Institute of Computational LinguisticsUniversity of ZurichSwitzerland

Personalised recommendations