SimVis: An Interactive Visual Field Exploration Tool Applied to Climate Research

  • F. Ladstädter
  • A.K. Steiner
  • B.C. Lackner
  • G. Kirchengast
  • P. Muigg
  • J. Kehrer
  • H. Doleisch
Chapter

Abstract

Climate research often deals with large multi-dimensional fields describing the state of the atmosphere. A novel approach to gain information about these large data sets has become feasible only recently using 4D visualization techniques. The Simulation Visualization (SimVis) software tool, developed by the VRVis Research Center (Vienna, Austria), uses such techniques to provide access to the data interactively and to explore and analyze large three-dimensional time-dependent fields. Non-trivial visualization approaches are applied to provide a responsive and useful interactive experience for the user. In this study we used SimVis for the investigation of climate research data sets. An ECHAM5 climate model run and the ERA-40 reanalysis data sets were explored, with the ultimate goal to identify parameters and regions reacting most sensitive to climate change, representing robust indicators. The focus lies on the upper troposphere-lower stratosphere (UTLS) region, in view of future applications of the findings to radio occultation (RO) climatologies. First results showing the capability of SimVis to deal with climate data, including trend time series and spatial distributions of RO parameters are presented.

References

  1. Cordero EC, de F Forster PM (2006) Stratospheric variability and trends in models used for the IPCC AR4. Atmos Chem Phys 6:5369–5380CrossRefGoogle Scholar
  2. Doleisch H (2004) Visual Analysis of Complex Simulation Data using Multiple Heterogenous Views. PhD thesis, Technical University of Vienna, see also http://www.VRVis.at/via/resources/diss-HD/
  3. Doleisch H, Hauser H (2002) Smooth brushing for focus+context visualization of simulation data in 3D. J WSCG 10(1):147–154Google Scholar
  4. Doleisch H, Gasser M, Hauser H (2003) Interactive feature specification for focus+context visualization of complex simulation data. In: VISSYM ’03: Proceedings of the symposium on Data visualisation 2003, Grenoble, France, pp 239–248Google Scholar
  5. Doleisch H, Mayer M, Gasser M, Priesching P, Hauser H (2005) Interactive feature specification for simulation data on time-varying grids. In: Proceedings of the Conference Simulation and Visualization (SimVis 2005), Magdeburg, Germany, pp 291–304Google Scholar
  6. Foelsche U, Kirchengast G, Steiner AK, Kornblueh L, Manzini E, Bengtsson L (2008a) An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study. J Geophys Res 113(D11108), doi:10.1029/2007JD009231Google Scholar
  7. Foelsche U, Borsche M, Steiner AK, Gobiet G, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2008b) Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite. Clim Dyn 31:49–65, doi:10.1007/s00382-007-0337-7Google Scholar
  8. Foelsche U, Pirscher B, Borsche M, Kirchengast G, Wickert J (2009) Assessing the climate monitoring utility of radio occultation data: From CHAMP to FORMOSAT-3/COSMIC. Terr Atmos Oceanic Sci 20(1):155–170, doi:10.3319/TAO.2008.01.14.01(F3C)Google Scholar
  9. Hauser H (2005) Generalizing focus+context visualization. In: Scientific Visualization: The Visual Extraction of Knowledge from Data (Proceedings of the Dagstuhl 2003 Seminar on Scientific Visualization), pp 305–327Google Scholar
  10. Kehrer J (2007) Integrating Interactive Visual Analysis of Large Time Series Data into the SimVis System. Master’s thesis, VRVis Research Center, Technical University of ViennaGoogle Scholar
  11. Lackner BC, Steiner AK, Ladstädter F, Kirchengast G (2009) Trend indicators of atmospheric climate change based on global climate model scenarios. In: Steiner A, Pirscher B, Foelsche U, Kirchengast G (eds) New Horizons in Occultation Research, Springer-Verlag, Berlin Heidelberg, doi:10.1007/978-3-642-00321-920Google Scholar
  12. Leroy SS, Dykema JA, Anderson JG (2006) Climate benchmarking using GNSS occultation. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and Climate: Studies by Occultation Methods, Springer-Verlag, Berlin, Heidelberg, pp 287–301Google Scholar
  13. Muigg P, Kehrer J, Oeltze S, Piringer H, Doleisch H, Preim B, Hauser H (2008) A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data. IEEE Computer Graphics Forum/Proceedings of EuroVis 2008 27(3):775–782Google Scholar
  14. Roeckner E, Buml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulaton model ECHAM5. Report no. 349, Max-Planck-Insitute for Meteorology, Hamburg, Germany, 127ppGoogle Scholar
  15. Santer BD, Wigley TML, Simmons AJ, Kållberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Brüggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109(D21104), doi:10.1029/ 2004JD005075Google Scholar
  16. Schmidt S, Schögl O, Kirchberger R, Doleisch H, Muigg P, Hauser H, Grabner M, Bornik A, Schmalstieg D (2005) Novel visualization and interaction techniques for gaining insight into fluid dynamics in internal combustion engines. In: Proceedings of the NAFEMS World Congress Conference 2005, MaltaGoogle Scholar
  17. Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan. ERA-40 Project Report Series No. 1, ECMWF, Reading, UK, 62 ppGoogle Scholar
  18. Steiner AK, Kirchengast G, Borsche M, Foelsche U, Schoengassner T (2007) A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J Geophys Res 112(D22110), doi:10.1029/2006JD008283Google Scholar
  19. Uppala S, KÅllberg P, Hernandez A, Saarinen S, Fiorino M, Li X, Onogi K, Sokka N, Andrae U, Da Costa Bechtold V (2004) ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2002. ECMWF Newsletter No. 101-Summer/Autumn 2004, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. Ladstädter
    • 1
  • A.K. Steiner
    • 1
  • B.C. Lackner
    • 1
  • G. Kirchengast
    • 1
  • P. Muigg
    • 2
  • J. Kehrer
    • 2
  • H. Doleisch
    • 2
  1. 1.Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM)University of GrazGrazAustria
  2. 2.VRVis Research CenterViennaAustria

Personalised recommendations