Construction of Consistent Temperature Records in the Lower Stratosphere Using Global Positioning System Radio Occultation Data and Microwave Sounding Measurements

Abstract

In this study, we use FORMOSAT-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) data to simulate Advanced Microwave Sounding Unit (AMSU) brightness temperatures (Tbs) for the lower stratosphere and compare them to AMSU Tbs from different National Oceanic and Atmospheric Administration (NOAA) missions in July 2007. Our analysis shows that because COSMIC data do not contain orbit drift errors and are not affected by on-orbit heating and cooling of the satellite component, they are very useful to identify the AMSU time/location-dependent biases for different NOAA missions. We also examine the consistency of the calibration coefficients among collocated NOAA AMSU Tb pairs (e.g., NOAA15-NOAA16, NOAA16-NOAA18, and NOAA15-NOAA18) and COSMIC-NOAA pairs. The usefulness of the COSMIC-calibrated AMSU Tbs for calibrating other overlapping AMSU Tbs from different platforms is also examined. These results demonstrate the potential to use both GPS RO and microwave sounding data to construct consistent climate temperature records.

References

  1. Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J Atmos Ocean Tech 17(9):1153–1170CrossRefGoogle Scholar
  2. Christy JR, Spencer RW, Norris WB, Braswell WD, Parker DE (2003) Error estimates of version 5.0 of MSU/AMSU bulk atmospheric temperatures. J Atmos Ocean Tech 20(5):613–629CrossRefGoogle Scholar
  3. Feng DD, Herman BM (1999) Remotely sensing the earth’s atmosphere using the global positioning system (GPS)—The GPS/MET data analysis. J Atmos Ocean Tech 16(8):989–1002CrossRefGoogle Scholar
  4. Grody NC, Vinnikov KY, Goldberg MD, Sullivan JT, Tarpley JD (2004) Calibration of multisatellite observations for climate studies: Microwave Sounding Unit (MSU). J Geophys Res 109(D24104), doi:10.1029/2004JD005079Google Scholar
  5. Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109(D06109), doi:10.1029/2003JD003909Google Scholar
  6. Ho SP, Kuo YH, Zeng Z, Peterson TC (2007) A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data. Geophys Res Lett 34(L15701), doi:10.1029/2007GL030202Google Scholar
  7. Ho SP, Goldberg M, Kuo YH, Zou CZ, Schreiner W (2009) Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results. Terr Atmos Oceanic Sci 20 (1), doi:10.3319/TAO.2007.12.06.01(F3C)Google Scholar
  8. Hocke K (1997) Inversion of GPS meteorology data. Ann Geophys 15:443–450CrossRefGoogle Scholar
  9. Karl TR, Hassol SJ, Miller CD, Murray WL (eds) (2006) Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DCGoogle Scholar
  10. Mears CA, Schabel MC, Wentz FJ (2003) A reanalysis of the MSU channel 2 tropospheric temperature record. J Climate 16(22):3650–3664CrossRefGoogle Scholar
  11. Mo T, Goldberg MD, Crosby DS, Cheng Z (2001) Recalibration of the NOAA microwave sounding unit. J Geophys Res 106(D10):10145–10150CrossRefGoogle Scholar
  12. Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302:269–272CrossRefGoogle Scholar
  13. Vinnikov KY, Grody NC, Robock A, Stouffer RJ, Jones PD, Goldberg MD (2006) Temperature trends at the surface and in the troposphere. J Geophys Res 111(D03106):1–14, doi:10.1029/2005JD006392Google Scholar
  14. Wickert J, Schmidt T, Beyerle G, König R, Reigber C, Jakowski N (2004) The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles. J Meteorol Soc Jpn 82(1B):381–395CrossRefGoogle Scholar
  15. Woolf HM, van Delst P, Zhang WJ (1999) NOAA-15 HIRS/3 and AMSU transmittance model validation. Tech. rep., Technical Proceedings of the International ATOVS Study Conference, 10th, Boulder, COGoogle Scholar
  16. Zou CZ, Goldberg MD, Cheng Z, Grody NC, Sullivan JT, Cao C, Tarple D (2006) Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J Geophys Res 111(D19114), doi:10.1029/2005JD006798Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.National Center for Atmospheric Research (NCAR) andUniversity Corporation for Atmospheric Research (UCAR)BoulderUSA
  2. 2.University Corporation for Atmospheric Research (UCAR)BoulderUSA
  3. 3.Institute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations