New Applications and Advances of the GPS Radio Occultation Technology as Recovered by Analysis of the FORMOSAT-3/COSMIC and CHAMP Data-Base

  • A.G. Pavelyev
  • Y.A. Liou
  • J. Wickert
  • V.N. Gubenko
  • A.A. Pavelyev
  • S.S. Matyugov


Comparative analysis of phase and amplitude variations of GPS radio-holograms allows one to separate the influence of the layered and irregular structures. A possibility exists to measure important parameters of internal waves: the intrinsic phase speed, the horizontal wind perturbations, and, under some assumptions, the intrinsic frequency as function of height in the atmosphere. A new technique was applied to measurements provided during CHAllenging Minisatellite Payload (CHAMP) and the Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) radio occultation (RO) missions. As an example of this approach, we establish the atmospheric origin of amplitude and phase variations in the RO signal at altitudes 10–26 km. We observed for the first time in the RO practice examples of internal wave breaking at altitudes between 38 km and 45 km. We obtained geographical distributions and seasonal dependence of atmospheric wave activity with global coverage within the years 2001–2003.


  1. Eckermann SD, Preusse P (1999) Global measurements of stratospheric mountain waves from space. Science 286(5444):1534–1537, doi:10.1126/science.286.5444.1534Google Scholar
  2. Eckermann SD, Hirota I, Hocking WA (1995) Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. QJR Meteorol Soc 121:149–186CrossRefGoogle Scholar
  3. Ern M, Preusse P, Warner CD (2006) Some experimental constraints for spectral parameters used in the Warner and McIntyre gravity wave parameterization scheme. Atmos Chem Phys 6:4361–4381CrossRefGoogle Scholar
  4. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1–64, doi:10.1029/2001RG000106Google Scholar
  5. Fritts DC, Tsuda T, Sato T, Fukao S, Kato S (1988) Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J Atmos Sci 45:1741–1759CrossRefGoogle Scholar
  6. Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64(4):451–469CrossRefGoogle Scholar
  7. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Kucherjavenkov IA, Matugov S, Zakharov A, Yakovlev O (2000) Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planets Space 52(11):893–899Google Scholar
  8. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Wickert J (2001) Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the radio occultation data. Adv Space Res 27(6/7):1321–1327CrossRefGoogle Scholar
  9. Liou YA, Pavelyev AG (2006) Simultaneous observations of radio wave phase and intensity variations for locating the plasma layers in the ionosphere. Geophys Res Lett 33(L23102), doi:10.1029/2006GL027112Google Scholar
  10. Liou YA, Pavelyev AG, Huang CY, Igarashi K, Hocke K (2002) Simultaneous observation of the vertical gradients of refractivity in the atmosphere and electron density in the lower ionosphere by radio occultation amplitude method. Geophys Res Lett 29(19):1937, doi:10.1029/2002GL015155Google Scholar
  11. Liou YA, Pavelyev AG, Huang CY, Igarashi K, Hocke K, Yan SK (2003) Analytic method for observation of the gravity waves using radio occultation data. Geophys Res Lett 30(20):2021, doi:10.1029/2003GL017818Google Scholar
  12. Liou YA, Pavelyev AG, Wickert J, Liu SF, Pavelyev AA, Schmidt T, Igarashi K (2006) Application of GPS radio occultation method for observation of the internal waves in the atmosphere. J Geophys Res Atmos 111(D06104), doi:10.1029/2005JD005823Google Scholar
  13. Martini E, Freni A, Facheris L, Cuccoli F (2006) Impact of tropospheric scintillation in the Ku/K bands on the communications between two LEO satellites in a radio occultation geometry. IEEE Trans Geosci Remote Sens 44(8):2063–2071CrossRefGoogle Scholar
  14. Pavelyev A, Igarashi K, Reigber C, Hocke K, Wickert J, Beyerle G, Matyugov S, Kucherjavenkov A, Pavelyev D, Yakovlev O (2002) First application of radioholographic method to wave observations in the upper atmosphere. Radio Sci 37(3):1034, doi:10.1029/2000RS002501Google Scholar
  15. Pavelyev AG, Tsuda T, Igarashi K, Liou YA, Hocke K (2003) Wave structures in the electron density profile in the ionospheric D- and E-layers observed by radio holography analysis of the GPS/MET radio occultation data. J Atmos Solar Terr Phys 65(1):59–70CrossRefGoogle Scholar
  16. Pavelyev AG, Liou YA, Wickert J (2004) Diffractive vector and scalar integrals for bistatic radio holographic remote sensing. Radio Sci 39(RS4011), doi:10.1029/2003RS002935Google Scholar
  17. Steiner AK, Kirchengast G (2000) Gravity wave spectra from GPS/MET occultation observations. J Atmos Ocean Tech 17(4):495–503CrossRefGoogle Scholar
  18. Suh YC, Lim GH (2006) Effects of the 11-year solar cycle on the Earth atmosphere revealed in ECMWF reanalyses. Geophys Res Lett 33(L24705), doi:10.1029/2006GL028128Google Scholar
  19. Tsuda T, Hocke K (2002) Vertical wave number spectrum of temperature fluctuations in the stratosphere using GPS occultation data. J Meteorol Soc Jpn 80(4B):925–938CrossRefGoogle Scholar
  20. Tsuda T, Nishida M, Rocken C, Ware RH (2000) A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J Geophys Res 105:7257–7273CrossRefGoogle Scholar
  21. Tsuda T, Ratnam MV, May PT, Alexander MJ, Vincent RA, MacKinnon A (2004) Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment). J Geophys Res 109(D20S03), doi:10.1029/2004JD004946Google Scholar
  22. Wang L, Geller MA, Alexander MJ (2005) Spatial and temporal variations of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and vertical propagation direction. J Atmos Sci 62:125–142CrossRefGoogle Scholar
  23. Wickert J, Pavelyev AG, Liou YA, Schmidt T, Reigber C, Igarashi K, Pavelyev AA, Matyugov S (2004) Amplitude variations in GPS signals as a possible indicator of ionospheric structures. Geophys Res Lett 31(L24801), doi:10.1029/2004GL020607Google Scholar
  24. Wilson R, Chanin ML, Hauchecorne A (1991) Gravity waves in the middle atmosphere observed by Rayleigh lidar, 2. Climatology. J Geophys Res 96(D3):5169–5183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A.G. Pavelyev
    • 1
  • Y.A. Liou
    • 2
  • J. Wickert
    • 3
  • V.N. Gubenko
    • 1
  • A.A. Pavelyev
    • 1
  • S.S. Matyugov
    • 1
  1. 1.Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (IRE RAS)MoscowRussia
  2. 2.Center for Space and Remote Sensing ResearchNational Central UniversityTaiwanChina
  3. 3.German Research Centre for Geosciences (GFZ)PotsdamGermany

Personalised recommendations