Advertisement

Generalization of 3D Buildings Modelled by CityGML

  • Hongchao FanEmail author
  • Liqiu Meng
  • Mathias Jahnke
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

City GML (City Geography Markup Language) not only represents the shape and graphical appearance of 3D buildings but specifically addresses the object semantics and the thematic properties, taxonomies and aggregations. The generalization algorithm presented in this paper takes this advantage of CityGML. That means that our approach considers the semantic information associated with geometrical objects of buildings to be generalized. Experiments show that the approach can reduce about 90% of the storage space of 3D buildings while keeping the information amounts as far as possible.

Keywords

Generalization 3D building CityGML Typification Simplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gröger, G., Kolbe, T.H., Czerwinski, A. & Nagel, C. (2008). OpenGIS® City Geography Markup Language (CityGML) Implementation Specification. http://www.opengeospatial.org/legal/.
  2. Forberg, A. (2007). Generalization of 3D building data based on scale-space approach. In: ISPRS Journal of Photogrammetry and Remote Sensing 62 (2007), pp. 104–111.CrossRefGoogle Scholar
  3. Kada, M. (2006). 3D Building Generalization based on Half-Space Modeling. In: Proceedings of the ISPRS Workshop on Multiple Representation and Interoperability of Spatial Data, Hannover.Google Scholar
  4. Kada, M. (2007). Generalisation of 3D Building Models by Cell Decomposition and Primitive Instancing. In: Proceedings of the Joint ISPRS Workshop on “Visualization and Exploration of Geospatial Data”, Stuttgart, Germany.Google Scholar
  5. Kolbe, T.H. (2008). Representing and Exchanging 3D City Models with CityGML. In: Lecture Notes in Geoinformation and Cartography, Springer Berlin Heidelberg 2009, ISSN 1863–2246, pp. 15–31.Google Scholar
  6. Mayer, H. (2005). Scale-spaces for generalization of 3D buildings. In: International Journal of Geographical Information Science. Vol. 19, No. 8–9, September-October 2005, pp. 975–997.CrossRefGoogle Scholar
  7. Meng L. and Forberg A. (2007). 3D building generalization. In: Mackaness, W., Raus, A. and Sarjakoski, T. (Eds): Generalization of Geographic Information: Cartographic Modelling and Applications, Elsevier, 2007.Google Scholar
  8. Sester, M. (2000). Generalization Based on Least Squares Adjustment. In: International Archives of Photogrammetry and Remote Sensing, Amsterdam, Netherlands, Vol. XXXIII, Part B4, pp. 931–938.Google Scholar
  9. Sester, M. & Brenner, C. (2004). Continuous Generalization for Visualization on Small Mobile Devices. In: Proceeding of Spatial Data Handing 2004, Springer-Verlag, pp. 469–480.Google Scholar
  10. Sester, M. (2005). Optimization approaches for generalization and data abstraction. In: International Journal of Geographical Information Science. Vol. 19, No. 8–9, September-October 2005, pp. 871–897.CrossRefGoogle Scholar
  11. Sester, M. (2007). 3D Visualization and Generalization. In: Photogrammetric Week 07, Wichmann, 03.09–07.09.2007. Stuttgart, Germany, pp. 285–295.Google Scholar
  12. Staufenbiel, W. (1973). Zur Automation der Generalisierung topographiser Karten mit besonderer Berücksichtigung großmaßstäbiger Gebäudedarstellungen. PhD thesis (in German), Univeristät Hannover, Germany.Google Scholar
  13. Thiemann, F. (2002). Generalization of 3D building data. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 34 (Part 4).Google Scholar
  14. Töpfer, F. and Pillewizer W. 1966. The Principles of Selection. In: the Cartographical Journal, Vol. 3, No. 1, pp. 10–16.Google Scholar
  15. van Kreveld, M. (2001). Smooth Generalization for Continuous Zooming. In: Proceeding of the ICC, Beijing, China, 2001.Google Scholar
  16. Li, Z., Yan, H., Ai, T. & Chen, J. (2004). Automated building generalization based on urban morphology and Gestalt theory. In: International Journal of Geographical Information Science. Vol. 18, No. 5, July-August 2004, pp. 513–534. http://www.iai.fzk.de/www-extern/index.php?id=1051#c1225 http://www.citygml.org/1539/ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of CartographyTechnische Universität MünchenGermany

Personalised recommendations