Simultaneous Coverage and Tracking (SCAT) of Moving Targets with Robot Networks

  • Luciano C. A. Pimenta
  • Mac Schwager
  • Quentin Lindsey
  • Vijay Kumar
  • Daniela Rus
  • Renato C. Mesquita
  • Guilherme A. S. Pereira
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 57)

Abstract

We address the problem of simultaneously covering an environment and tracking intruders (SCAT). The problem is translated to the task of covering environments with time-varying density functions under the locational optimization framework. This allows for coupling the basic subtasks: task assignment, coverage, and tracking. A decentralized controller with guaranteed exponential convergence is devised. The SCAT algorithm is verified in simulations and on a team of robots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cortés, J., Martínez, S., Bullo, F.: Spatially-distributed coverage optimization and control with limited-range interactions. ESIAM: Control, Optimisation and Calculus of Variations 11, 691–719 (2005)MATHCrossRefGoogle Scholar
  2. 2.
    Cortés, J., Martínez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks: Variations on a theme. In: Proceedings of the 10th Mediterranean Conf. on Control and Automation, Lisbon, Portugal, pp. 1–9 (2002)Google Scholar
  3. 3.
    Cortés, J., Martínez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation 20(2), 243–255 (2004)CrossRefGoogle Scholar
  4. 4.
    Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer Series in Operations Research. Springer, New York (1995)Google Scholar
  5. 5.
    Flanders, H.: Differentiation under the integral sign. American Mathematical Monthly 80(6), 615–627 (1973)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  7. 7.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28(2), 129–137 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Michael, N., Fink, J., Kumar, V.: Experimental testbed for large multirobot teams. IEEE Robotics and Automation Magazine 15(1), 53–61 (2008)CrossRefGoogle Scholar
  9. 9.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley Series in Probability and Statistics. Wiley, New york (2000)MATHGoogle Scholar
  10. 10.
    Pimenta, L.C.A., Kumar, V., Mesquita, R.C., Pereira, G.A.S.: Sensing and coverage for a network of heterogeneous robots. In: Proc. 47th IEEE Conf. on Decision and Control, Cancun, Mexico, pp. 3947–3952 (2008)Google Scholar
  11. 11.
    Schwager, M., Slotine, J.-J.E., Rus, D.: Consensus learning for distributed coverage control. In: Proc. IEEE Int. Conf. Robot. Automat., Pasadena, USA, pp. 1042–1048 (2008)Google Scholar
  12. 12.
    Weber, A.: Theory of the Location of Industries. The University of Chicago Press, Chicago (1929); Translated by Carl. J. FriedrichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luciano C. A. Pimenta
    • 1
    • 3
  • Mac Schwager
    • 2
  • Quentin Lindsey
    • 1
  • Vijay Kumar
    • 1
  • Daniela Rus
    • 2
  • Renato C. Mesquita
    • 3
  • Guilherme A. S. Pereira
    • 3
  1. 1.GRASP LabUniversity of PennsylvaniaUSA
  2. 2.CSAILMITUSA
  3. 3.Departamento de Engenharia ElétricaUniversidade Federal de Minas GeraisBrazil

Personalised recommendations