Discovering a Point Source in Unknown Environments

  • Martin Burger
  • Yanina Landa
  • Nicolay M. Tanushev
  • Richard Tsai
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 57)


We consider the inverse problem of discovering the location of a source from very sparse point measurements in a bounded domain that contains impenetrable (and possibly unknown) obstacles. We present an adaptive algorithm for determining themeasurement locations, and ultimately, the source locations. Specifically, we investigate source discovery for the Laplace operator, though the approach can be applied to more general linear partial differential operators. We propose a strategy for the case when the obstacles are unknown and the environment has to be mapped out using a range sensor concurrently with source discovery.


Source Location Motion Planning Path Planning Blue Region Range Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton- Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston (1997); With appendices by Maurizio Falcone and Pierpaolo SoraviazbMATHCrossRefGoogle Scholar
  2. 2.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  3. 3.
    Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. i: the rectilinear case. J. ACM 45(2), 215–245 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    El Badia, A., Ha-Duong, T.: On an inverse source problem for the heat equation. Application to a pollution detection problem. J. Inverse Ill-Posed Probl. 10(6), 585–599 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    El Badia, A., Ha-Duong, T., Hamdi, A.: Identification of a point source in a linear advectiondispersion- reaction equation: application to a pollution source problem. Inverse Problems 21(3), 1121–1136 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Evans, L.C.: Partial Differential Equations. Amer. Math. Soc. (1998)Google Scholar
  7. 7.
    Gabriely, Y., Rimon, E.: Competitive complexity of mobile robot on line motion planning problems. In: WAFR, pp. 249–264 (2004)Google Scholar
  8. 8.
    Gibou, F., Fedkiw, R.P., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goodman, J.E., O’Rourke, J. (eds.): Handbook of discrete and computational geometry, 2nd edn. CRC Press LLC, Boca Raton (2004)zbMATHGoogle Scholar
  10. 10.
    Halperin, D., Kavraki, L.E., Latombe, J.C.: Robot algorithms. In: Atallah, M. (ed.) Handbook of Algorithms and Theory of Computation. CRC Press, Boca Raton (1999)Google Scholar
  11. 11.
    Halperin, D., Kavraki, L.E., Latombe, J.C.: Robotics. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2004)Google Scholar
  12. 12.
    Kamon, I., Rivlin, E.: Sensory-based motion planning with global proofs. TRA 13(6), 814–822 (1997)Google Scholar
  13. 13.
    Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete Algorithms) (1993)Google Scholar
  14. 14.
    Landa, Y., Galkowski, D., Huang, Y., Joshi, A., Lee, C., Leung, K., Malla, G., Treanor, J., Voroninski, V., Bertozzi, A., Tsai, Y.-H.: Robotic path planning and visibility with limited sensor data. In: American Control Conference, ACC 2007, July 2007, pp. 5425–5430 (2007)Google Scholar
  15. 15.
    Landa, Y., Tsai, R.: Visibility of point clouds and exploratory path planning in unknown environments. CAM Report 08-28 (Submitted to Communications in Mathematical Sciences) (2008)Google Scholar
  16. 16.
    Landa, Y., Tsai, R., Cheng, L.-T.: Visibility of point clouds and mapping of unknown environments. Lecture Notes in Computational Science and Engineering, pp. 1014–1025. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Latombe, J.-C.: Robot motion planning. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  18. 18.
    Laubach, S.L., Burdick, J.W.: An autonomous sensor-based path-planning for planetary microrovers. In: ICRA (1999)Google Scholar
  19. 19.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)zbMATHCrossRefGoogle Scholar
  20. 20.
    Ling, L., Hon, Y.C., Yamamoto, M.: Inverse source identification for Poisson equation. Inverse Problems in Science and Engineering 13(4), 433–447 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lumelsky, V.J., Stepanov, A.A.: Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical Comput. Sci. 84, 127–150 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sethian, J.A.: Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge (1999); Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials sciencezbMATHGoogle Scholar
  25. 25.
    Tovar, B., Guilamo, L., LaValle, S.M.: Gap navigation trees: A minimal representation for visibility-basedtasks. In: Erdmann, M., Hsu, D., Overmars, M., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics VI. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-optimal navigation in an unknown environment withoutsensing distances. IEEE Trans. Robotics 23(3), 506–518 (2007)CrossRefGoogle Scholar
  27. 27.
    Tsai, R., Kao, C.-Y.: A level set formulation for visibility and its discretization. Journal of Scientific Computing (to appear)Google Scholar
  28. 28.
    Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Burchard, P., Sapiro, G.: Visibility and its dynamics in a PDE based implicit framework. J. Comput. Phys. 199(1), 260–290 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tsitsiklis, J.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40(9), 1528–1538 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry. Elsevier Science, Amsterdam (2000)Google Scholar
  31. 31.
    Wang, Y., Chirikjian, G.: A new potential field method for robot path planning. In: Proceedings of the IEEE International Robotics and Automation Conference, San Francisco, CA, pp. 977–982 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Burger
    • 1
  • Yanina Landa
    • 2
  • Nicolay M. Tanushev
    • 3
  • Richard Tsai
    • 3
  1. 1.Institute for Computational and Applied MathematicsWestfaelische Wilhelms Universitaet Muenster 
  2. 2.University of CaliforniaLos Angeles
  3. 3.University of Texas at Austin 

Personalised recommendations